Lecture 3 Island Physics

Dr. Ido Filin ifilin@univ.haifa.ac.il

08 November 2012

Outline

Different types of Islands

- 2) The Geological Lifecycle of Islands
 - Volcano formation
 - Coral island formation
- 3 Changes in sea level
- 4 Climatic conditions on islands
 - Latitude
 - Rainfall
 - Telescoping of environmental variability

Oceanic vs. Continental (shelf) Islands

לא בקנה מידה

בקנה מידה

Oceanic vs. Continental (shelf) Islands

Mantle, Asthenosphere מעטפת

Oceanic vs. Continental (shelf) Islands

Oceanic vs. Continental (shelf) Islands

Oceanic vs. Continental (shelf) Islands

Continental (shelf) islands

- Rise from continental crust (continental shelf)
- Mixed origin and rock types.
- May have been connected to mainland.
- Britain, Ireland, Indonesian islands of the Sunda shelf, Sri Lanka, Malta.

Oceanic islands

- Rise from oceanic crust.
- Invariably volcanic in origin (basaltic).
- Have never been connected to mainland.
- Hawaii, Galapagos, Canary islands, Azores, Mauritius, Easter island.

Oceanic islands: High vs. Low islands

Oceanic islands: High vs. Low islands

Low Island

High Island

Outline

Different types of Islands

- 2 The Geological Lifecycle of Islands
 - Volcano formation
 - Coral island formation
- 3 Changes in sea level
- 4 Climatic conditions on islands
 - Latitude
 - Rainfall
 - Telescoping of environmental variability
 - 5 Summary of Island Physics

Earth lithosphere is broken into tectonic plates.

In plate margin new crust may be formed.

בניית קרום חדש OUTLINE PLATESMAP THREE

Pushing the entire plate and causing it to drift.

Plate drift also caused by currents in liquid mantle and by plate subduction on the opposite side of the plate

... causing continents and islands to move like on a conveyor belt.

Plates divergence \rightarrow Mid-oceanic ridge \rightarrow Usually sea mountains (seamounts); Sometimes islands.

Island Lifecycle Volcano formation Three ways to form volcanic islands

Mid-oceanic ridges

Triple junctions

Island Lifecycle Volca

Volcano formation

Three ways to form volcanic islands

Plate convergence and subduction \rightarrow Trench \rightarrow Island arc

Island Lifecycle Volcano formation Three ways to form volcanic islands

Plate convergence and subduction \rightarrow Trench \rightarrow Island arc

Volcano formation

Three ways to form volcanic islands

Intra-plate hotspot

Hotspot + plate movement \rightarrow Linear island chains

Hawaiian islands age, area and elevation:

Name	Age (Myr)	Area (km²)	Elevation (m)
Hawaii	0.38	10,432	4,205
Maui	1	1883	3,055
Ohau	3	1545	1220
Kauai	5.1	1430	1598
Laysan	19.9	4	15

• Plate divergence – often in triple junctions.

Iceland, Azores, Rodrigues.

• Plate convergence – Island arcs parallel to trenches.

Solomons, Aleutian, Sandwich islands, Antilles, South Aegean arc, Japan.

• Hotspot – linear or clustered island groups.

Hawaii, Galapagos, Canary islands, Cape Verde.

Island Lifecycle

Coral island formation

From high to low island: geology meets biology

Island Lifecycle

Coral island formation

From high to low island: geology meets biology

Fringing reef:

As volcano drifts away from point of origin (e.g., hotspot), through plate movement, it sinks together with the oceanic crust.

Island Lifecycle

Coral island formation

From high to low island: geology meets biology

Fringing reef \rightarrow Barrier reef \rightarrow Atoll:

Atoll

Fringing reef \rightarrow Barrier reef \rightarrow Atoll:

Fringing reef \rightarrow Barrier reef \rightarrow Atoll:

Outline

Different types of Islands

2 The Geological Lifecycle of Islands
 • Volcano formation
 • Coral island formation

3 Changes in sea level

- 4 Climatic conditions on islands
 - Latitude
 - Rainfall
 - Telescoping of environmental variability
 - 5 Summary of Island Physics

- How much of the island is exposed and how much lies beneath the waves depends on **relative** sea level.
- Changes in relative sea level may occur through:
 1. Tectonic sinking or uplift of oceanic crust,
 2. Change in volume of water in the sea.
- For example, sea level drops when water becomes trapped in polar ice caps during glaciations.

- How much of the island is exposed and how much lies beneath the waves depends on **relative** sea level.
- Changes in relative sea level may occur through:
 1. Tectonic sinking or uplift of oceanic crust,
 2. Change in volume of water in the sea.
- For example, sea level drops when water becomes trapped in polar ice caps during glaciations.

- How much of the island is exposed and how much lies beneath the waves depends on **relative** sea level.
- Changes in relative sea level may occur through:
 1. Tectonic sinking or uplift of oceanic crust,
 2. Change in volume of water in the sea.
- For example, sea level drops when water becomes trapped in polar ice caps during glaciations.

- How much of the island is exposed and how much lies beneath the waves depends on **relative** sea level.
- Changes in relative sea level may occur through:
 1. Tectonic sinking or uplift of oceanic crust,
 2. Change in volume of water in the sea.
- For example, sea level drops when water becomes trapped in polar ice caps during glaciations.

Land bridges to continental islands

Land bridges to continental islands

Land bridges to continental islands

World topography during last ice age.

Post-glacial rebound

לאחר הפשרת הקרחון הקרום שואף לחזור למצבו המקורי, נדחף מעלה

Outline

- Different types of Islands
- 2 The Geological Lifecycle of Islands
 Volcano formation
 Coral island formation
- 3 Changes in sea level
- 4 Climatic conditions on islands
 - Latitude
 - Rainfall
 - Telescoping of environmental variability

Latitude

Latitude and climate

Climate roughly depends on latitude (קו רוחב).

Island climate Latitude

Latitude and climate

Climate roughly depends on latitude (קו רוחב).

Proximity to sea \rightarrow Intra-annual temperature fluctuation is reduced (in comparison to continental climate of similar latitude).

 \bullet Evaporated water from sea \rightarrow High humidity.

- Evaporated water from sea \rightarrow High humidity.
- On high island, evaporated water rises with wind, cools, condenses into clouds, and finally falls as rain.

• Evaporated water from sea \rightarrow High humidity.

Island climate

• On high island, evaporated water rises with wind, cools, condenses into clouds, and finally falls as rain.

Rainfall

 On low islands, no such effect → Low islands are relatively dry.

 On high islands, different combinations of rainfall and temperature as elevation increases lead to vegetation/elevation zones.

- On high islands, different combinations of rainfall and temperature as elevation increases lead to vegetation/elevation zones.
- On high island, rain shadow leads to arid/desert regions.
 Examples: Tenerife, Kauai.

Outline

Different types of Islands

- 2 The Geological Lifecycle of Islands
 Volcano formation
 Coral island formation
- 3 Changes in sea level
- 4 Climatic conditions on islands
 - Latitude
 - Rainfall
 - Telescoping of environmental variability

Summary of Island Physics

- Island classification
 - Continental (shelf) vs. Oceanic.
 - High vs. Low.

2 Three ways to form oceanic island volcanoes.

- Mid-oceanic ridges where plates diverge.
- Island arcs where plates converge.
- Linear chains intra-plate hotspot.
- From high to low island Coral reef growth on top of sinking volcanic rock.
 - Fringing reef \rightarrow Barrier reef \rightarrow Atoll.
- Sea level changes Repeated glaciations.
 - Land bridges to continental islands.
 - Oceanic islands exposed and flooded repeatedly.
 - Post-glacial rebound.

Island climates – Latitude and altitude/elevation.

- Reduced temperature fluctuation, relative to latitude.
- Wider range of climatic conditions on high islands (elevation zones, rain shadow).
- Low islands relatively dry.

- Island classification
 - Continental (shelf) vs. Oceanic.
 - High vs. Low.
- Three ways to form oceanic island volcanoes.
 - Mid-oceanic ridges where plates diverge.
 - Island arcs where plates converge.
 - Linear chains intra-plate hotspot.
- From high to low island Coral reef growth on top of sinking volcanic rock.
 - Fringing reef \rightarrow Barrier reef \rightarrow Atoll.
- Sea level changes Repeated glaciations.
 - Land bridges to continental islands.
 - Oceanic islands exposed and flooded repeatedly.
 - Post-glacial rebound.
- Island climates Latitude and altitude/elevation.
 - Reduced temperature fluctuation, relative to latitude.
 - Wider range of climatic conditions on high islands (elevation zones, rain shadow).
 - Low islands relatively dry.

- Island classification
 - Continental (shelf) vs. Oceanic.
 - High vs. Low.
- 2 Three ways to form oceanic island volcanoes.
 - Mid-oceanic ridges where plates diverge.
 - Island arcs where plates converge.
 - Linear chains intra-plate hotspot.
- From high to low island Coral reef growth on top of sinking volcanic rock.
 - Fringing reef \rightarrow Barrier reef \rightarrow Atoll.
- Sea level changes Repeated glaciations.
 - Land bridges to continental islands.
 - Oceanic islands exposed and flooded repeatedly.
 - Post-glacial rebound.
- Island climates Latitude and altitude/elevation.
 - Reduced temperature fluctuation, relative to latitude.
 - Wider range of climatic conditions on high islands (elevation zones, rain shadow).
 - Low islands relatively dry.

- Island classification
 - Continental (shelf) vs. Oceanic.
 - High vs. Low.
- 2 Three ways to form oceanic island volcanoes.
 - Mid-oceanic ridges where plates diverge.
 - Island arcs where plates converge.
 - Linear chains intra-plate hotspot.
- From high to low island Coral reef growth on top of sinking volcanic rock.
 - Fringing reef \rightarrow Barrier reef \rightarrow Atoll.
- Sea level changes Repeated glaciations.
 - Land bridges to continental islands.
 - Oceanic islands exposed and flooded repeatedly.
 - Post-glacial rebound.
- Island climates Latitude and altitude/elevation.
 - Reduced temperature fluctuation, relative to latitude.
 - Wider range of climatic conditions on high islands (elevation zones, rain shadow).
 - Low islands relatively dry.

- Island classification
 - Continental (shelf) vs. Oceanic.
 - High vs. Low.
- 2 Three ways to form oceanic island volcanoes.
 - Mid-oceanic ridges where plates diverge.
 - Island arcs where plates converge.
 - Linear chains intra-plate hotspot.
- From high to low island Coral reef growth on top of sinking volcanic rock.
 - Fringing reef \rightarrow Barrier reef \rightarrow Atoll.
- Sea level changes Repeated glaciations.
 - Land bridges to continental islands.
 - Oceanic islands exposed and flooded repeatedly.
 - Post-glacial rebound.
- Island climates Latitude and altitude/elevation.
 - Reduced temperature fluctuation, relative to latitude.
 - Wider range of climatic conditions on high islands (elevation zones, rain shadow).
 - Low islands relatively dry.

The natural laboratory paradigm in light of island physics

- Small area and discrete.
- Simple biotas.
- Numerous and varied.

• "Telescoping" of environmental variability.

The natural laboratory paradigm in light of island physics

- Small area and discrete.
- Simple" biotas.
- Numerous and varied.

Same processes created thousands of islands worldwide in different circumstances – Different latitudes, different elevations, high vs. low, as single islands or in island groups, different ages, etc.

4 "Accelerated time".

• "Telescoping" of environmental variability.

The natural laboratory paradigm in light of island physics

- Small area and discrete.
- Simple" biotas.
- Numerous and varied.

Same processes created thousands of islands worldwide in different circumstances – Different latitudes, different elevations, high vs. low, as single islands or in island groups, different ages, etc.

④ "Accelerated time".

Geological lifecycle of oceanic islands – on the order of 10 million years; Most are only few millions of years old or less (e.g., Hawaii).

• "Telescoping" of environmental variability.

The natural laboratory paradigm in light of island physics

- Small area and discrete.
- Simple" biotas.
- Numerous and varied.

Same processes created thousands of islands worldwide in different circumstances – Different latitudes, different elevations, high vs. low, as single islands or in island groups, different ages, etc.

④ "Accelerated time".

Geological lifecycle of oceanic islands – on the order of 10 million years; Most are only few millions of years old or less (e.g., Hawaii).

"Telescoping" of environmental variability.

On the same **high** island, cloud forests and deserts – very humid vs. very dry environments, elevation zones.