Island Physics summary and Long distance dispersal

Dr. Ido Filin ifilin@univ.haifa.ac.il

15 November 2012

Summary of Island Physics

- Island classification
 - Continental (shelf) vs. Oceanic.
 - High vs. Low.

2 Three ways to form oceanic island volcanoes.

- Mid-oceanic ridges where plates diverge.
- Island arcs where plates converge.
- Linear chains intra-plate hotspot.
- From high to low island Coral reef growth on top of sinking volcanic rock.
 - Fringing reef \rightarrow Barrier reef \rightarrow Atoll.
- Sea level changes Repeated glaciations.
 - Land bridges to continental islands.
 - Oceanic islands exposed and flooded repeatedly.
 - Post-glacial rebound.

Island climates – Latitude and altitude/elevation.

- Reduced temperature fluctuation, relative to latitude.
- Wider range of climatic conditions on high islands (elevation zones, rain shadow).
- Low islands relatively dry.

- Island classification
 - Continental (shelf) vs. Oceanic.
 - High vs. Low.
- Ihree ways to form oceanic island volcanoes.
 - Mid-oceanic ridges where plates diverge.
 - Island arcs where plates converge.
 - Linear chains intra-plate hotspot.
- From high to low island Coral reef growth on top of sinking volcanic rock.
 - Fringing reef \rightarrow Barrier reef \rightarrow Atoll.
- Sea level changes Repeated glaciations.
 - Land bridges to continental islands.
 - Oceanic islands exposed and flooded repeatedly.
 - Post-glacial rebound.
- 5 Island climates Latitude and altitude/elevation.
 - Reduced temperature fluctuation, relative to latitude.
 - Wider range of climatic conditions on high islands (elevation zones, rain shadow).
 - Low islands relatively dry.

- Island classification
 - Continental (shelf) vs. Oceanic.
 - High vs. Low.
- 2 Three ways to form oceanic island volcanoes.
 - Mid-oceanic ridges where plates diverge.
 - Island arcs where plates converge.
 - Linear chains intra-plate hotspot.
- From high to low island Coral reef growth on top of sinking volcanic rock.
 - Fringing reef \rightarrow Barrier reef \rightarrow Atoll.
- Sea level changes Repeated glaciations.
 - Land bridges to continental islands.
 - Oceanic islands exposed and flooded repeatedly.
 - Post-glacial rebound.
- 5 Island climates Latitude and altitude/elevation.
 - Reduced temperature fluctuation, relative to latitude.
 - Wider range of climatic conditions on high islands (elevation zones, rain shadow).
 - Low islands relatively dry.

- Island classification
 - Continental (shelf) vs. Oceanic.
 - High vs. Low.
- 2 Three ways to form oceanic island volcanoes.
 - Mid-oceanic ridges where plates diverge.
 - Island arcs where plates converge.
 - Linear chains intra-plate hotspot.
- From high to low island Coral reef growth on top of sinking volcanic rock.
 - Fringing reef \rightarrow Barrier reef \rightarrow Atoll.
- Sea level changes Repeated glaciations.
 - Land bridges to continental islands.
 - Oceanic islands exposed and flooded repeatedly.
 - Post-glacial rebound.
- 5 Island climates Latitude and altitude/elevation.
 - Reduced temperature fluctuation, relative to latitude.
 - Wider range of climatic conditions on high islands (elevation zones, rain shadow).
 - Low islands relatively dry.

- Island classification
 - Continental (shelf) vs. Oceanic.
 - High vs. Low.
- 2 Three ways to form oceanic island volcanoes.
 - Mid-oceanic ridges where plates diverge.
 - Island arcs where plates converge.
 - Linear chains intra-plate hotspot.
- From high to low island Coral reef growth on top of sinking volcanic rock.
 - Fringing reef \rightarrow Barrier reef \rightarrow Atoll.
- Sea level changes Repeated glaciations.
 - Land bridges to continental islands.
 - Oceanic islands exposed and flooded repeatedly.
 - Post-glacial rebound.
- Island climates Latitude and altitude/elevation.
 - Reduced temperature fluctuation, relative to latitude.
 - Wider range of climatic conditions on high islands (elevation zones, rain shadow).
 - Low islands relatively dry.

The natural laboratory paradigm in light of island physics

- Small area and discrete.
- Simple biotas.
- Numerous and varied.

• "Telescoping" of environmental variability.

The natural laboratory paradigm in light of island physics

- Small area and discrete.
- Simple" biotas.
- Numerous and varied.

Same processes created thousands of islands worldwide in different circumstances – Different latitudes, different elevations, high vs. low, as single islands or in island groups, different ages, etc.

4 "Accelerated time".

Telescoping" of environmental variability.

The natural laboratory paradigm in light of island physics

- Small area and discrete.
- Simple" biotas.
- Numerous and varied.

Same processes created thousands of islands worldwide in different circumstances – Different latitudes, different elevations, high vs. low, as single islands or in island groups, different ages, etc.

4 "Accelerated time".

Geological lifecycle of oceanic islands – on the order of 10 million years; Most are only few millions of years old or less (e.g., Hawaii).

• "Telescoping" of environmental variability.

The natural laboratory paradigm in light of island physics

- Small area and discrete.
- Simple" biotas.
- Numerous and varied.

Same processes created thousands of islands worldwide in different circumstances – Different latitudes, different elevations, high vs. low, as single islands or in island groups, different ages, etc.

④ "Accelerated time".

Geological lifecycle of oceanic islands – on the order of 10 million years; Most are only few millions of years old or less (e.g., Hawaii).

"Telescoping" of environmental variability.

On the same **high** island, cloud forests and deserts – very humid vs. very dry environments, elevation zones.

Arrival on oceanic islands

Long distance dispersal to islands

- Migration to oceanic islands is via long-distance dispersal (הפצה ארוכת טווח).
- Governed by probability.
- Means of dispersal identified by Carlquist (1974):
 - Air flotation very small seeds, insects, spiderlings etc.
 - Flight and island hopping birds.
 - Birds seeds/eggs (e.g., of insects or landsnails)/individuals attached to feathers, in mud on feet, or carried internally (ingested seeds).
 - Oceanic drift / sea flotation resistance to seawater; e.g., coconut.
 - Rafting seeds and animals resistant to desiccation (e.g., lizards, or landsnails).
- "Stepping stones" islands in a chain or ancient, now vanished, islands – may have aided dispersal to remote islands.

Arrival on oceanic islands

Island biology in a (coco)nutshell

Island Physics

Isolation
Small area
Young age

Island Biodiversity

Species poor
Disharmony
High Endemicity

Insular Evolution

"Untypical" creatures
Adaptive radiation

Long distance dispersal to islands

1. Some groups of animals and plants are more suited to long distance dispersal than others.

2. Actual arrival on island is ultimately a **probabilistic** event.

- " A means of transport does not need to be frequent to be operative. " (Carlquist 1974, p.69)
- "... occasional means of transport having been largely efficient in the long course of time, ... " (Darwin 1859 1974, p.384)
- → Many different ways (some very strange, bizarre and improbable), by which to arrive on oceanic islands.
- > Over long geological/evolutionary time even a rare event may happen once or twice (or not – probabilistic occurrence).