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Course info

Course Info
Life History Theory, October 2012 - January 2013.

Language:
Slides in English.
Lecture and exam in Hebrew.

Dr. Ido Filin, ifilin@univ.haifa.ac.il

Office hours: Thursday 14:15-16:00,

Room 241, Multipurpose build.

Time: Thursdays, 16:30 - 18:00.

Place: Computer room 576, main building.

Exam: no exam, final project.
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Course info

Course Info
Life History Theory, October 2012 - January 2013.

.milibxz zybd zaeg

.libxzd scay jix`z cr dybd

. ziteq dcear 60% ,milibxz 40% :iteq oeiv

All of the course material will be available on the

Highlearn system.

Reading: selected pages from the literature listed in the

syllabus, and possibly from other sources.

Available through HighLearn.
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Introduction Life history problems

Example: offspring size and number

Basic life history (reproductive)
traits.

Fundamental tradeoff: Produce
many small or few large offspring.

Exhibit great deal of inter- and
intra-specific variation.

Plasticity and intra-individual
variation.

Life history theory studies this
variation.
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Introduction Life history problems

Prologue: life history and its subject of inquiry

Life history mostly deals with the level of the whole
organism.

But also depends on knowledge and mechanistic
models on intra-organismal processes.

And on models from population ecology and
population genetics.

Has implications at the level of the population and
community.
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Introduction Life history problems

Organism = Life cycle

The whole organism is the entire life-cycle.

Spatial and temporal wholeness.

A butterfly is neither the caterpillar nor the imago.
A butterfly is the entire lifecycle
(that includes caterpillar and imago as stages within it).

Traits, phenotypic values, behavior, etc. are not fixed,
but change through lifetime.
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Introduction Life history problems

An example: what if I were an annual plant . . .
The timeline of an annual plant lifecycle.
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Introduction Life history problems

An example: what if I were an annual plant . . .
The timeline of an annual plant lifecycle.
Beginning of growing season: a seed germinates and the
plant begins to growth vegetatively.

-

6

biomass production

Time / Age
Germination

Growth Reproduction Season endGermination Growth Reproduction Season end
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Introduction Life history problems

An example: what if I were an annual plant . . .
The timeline of an annual plant lifecycle.
Vegetative growth: as the plant grows, its biomass production
rate increases – this biomass production translates to further
vegetative growth, which further increases biomass produc-
tion rate.

-

6

biomass production

Time / Age
Germination Growth

Reproduction Season endGermination Growth Reproduction Season end
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Introduction Life history problems

An example: what if I were an annual plant . . .
The timeline of an annual plant lifecycle.
Switch to reproduction: at some time within the season, veg-
etative growth ceases and the plant switches to investing in
reproduction –producing flowers and seeds.

-

6

biomass production

Time / Age
Germination Growth Reproduction

Season endGermination Growth Reproduction Season end
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Introduction Life history problems

An example: what if I were an annual plant . . .
The timeline of an annual plant lifecycle.
End of season: death.

-

6

biomass production

Time / Age
Germination Growth Reproduction Season end

Germination Growth Reproduction Season end
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Introduction Life history problems

An example: what if I were an annual plant . . .

The timeline of an annual plant lifecycle.

State-dependence: The rate of growth or reproduction de-
pends on biomass production rate, which increases as the
plant becomes larger.

-

6

biomass production

Time / Age
Germination Growth Reproduction Season end

Germination Growth Reproduction Season end
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Introduction Life history problems

An example: what if I were an annual plant . . .

The timeline of an annual plant lifecycle.

Trade-off: Start reproducing earlier – slower reproduction but
for longer time; or later – less time to reproduce but reproduc-
tion is faster. A trade-off between growth and reproduction

-

6

biomass production

Time / Age

Germination Growth Reproduction Season end

Germination Growth Reproduction Season end
OUTLINE OFFSPRING ANNUAL EXTREMUM 8/ 16



Introduction Life history problems

Life history traits

In the most narrow sense, life history traits relate to
schedules of reproduction and mortality.

Age-dependent reproduction.
Age-dependent survival.

Closely related to “fitness” – the demographic impact
of the individual.

But nowadays also relate to a wider scope of
organismal traits.

Behavior.
Physiology.
Morphology.
Secondary sexual traits.

All of which can eventually affect organismal
performance in terms of reproduction and survival.
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Introduction Modeling

Modeling in the natural sciences

This course is about mathematical modeling.

The sciences do not try to explain, they hardly even
try to interpret, they mainly make models. By a
model is meant a mathematical construct which,
with the addition of certain verbal interpretations
describes observed phenomena. The justification of
such a mathematical construct is solely and
precisely that it is expected to work.

John von Neumann

Essentially, all models are wrong, but some are
useful.

George Box
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Introduction Modeling

Modeling in the natural sciences
Example: Classical Newtonian mechanics is wrong.
It is only an approximate description of nature – there is
always an error, unexplained phenomenon, or deviation
from model-based prediction.
Newtonian mechanics is not a very good description of
nature for very high speeds, very large masses, or at the
atomic or molecular scale.
However, Newtonian mechanics is still useful for
everyday life: building bridges, designing cars,
launching satellites or playing “angry birds”.
As science progresses, we develop better
approximations – in this case, relativity and quantum
mechanics.
But those are still only approximate descriptions – some
difference remains between prediction and
observation.
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Introduction Modeling

Modeling in the natural sciences
Science deals with observed phenomena – nature,
"reality"– not with truth (whatever truth is).

Science tries to find general patterns in nature and to
describe them – to bring together disparate
observations under a unified conceptual framework.

Sooner or later this process leads to a mathematical
model.

A mathematical construct that approximately describes
(mimics) nature.

A mathematical model is useful because:
1 It is a compact description of a set of observed

phenomena.
2 Provides quantitative results that can be compared to

observed values.
3 Can predict future (not yet observed) occurrences of

the natural phenomena it attempts to describe.
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Introduction Modeling

State variables: compact description of nature

Mass on a spring.

The state of the system is described by
displacement from equilibrium point.

We denote it by x.
We measure x in units of length.
(mm, cm, inches, etc.)

The spring-mass system can be in
Extension state: x ¡ 0.
Compression state: x   0.
Equilibrium state: x � 0.

By comparing values of x we can compare different springs,
or the state of the same spring in different times.
We can also look for rules in the way x changes over time
Ñ predict the state of the system in the future.
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Introduction Modeling

State variables: compact description of nature
A state variable is that element of the mathematical
model that relates to a property of the natural system
that we are interested in.

Usually, it relates to a property that changes, or at least
may change, over time.

Examples:
x – displacement of the mass-spring system.
State of matter: solid, liquid, gas.
p – allele frequency in a population.
Body mass of an animal.

Can be continuous:
x � 1cm, �2.3mm, 10.9m.
p � 0.5, 0.99, 0.01, 1, 0.

or discrete:
solid/liquid/gas.
extended/compressed/at equilibrium.
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Introduction Modeling

State variables: compact description of nature
Rarely does a single state variable fully captures the
relevant properties of a natural system.

We usually require several. For example:
A more complete description of the spring-mass system
requires both displacement, x, and velocity, v.
A thermodynamic system is described by volume,
pressure and temperature.
Allele frequencies of several alleles/loci/genes.

In life history theory:
Age – reproduction and survival vary with age.
Size – larger plants have higher rate of biomass
production.
Nutritional state – a starving animal has higher mortality
risk than a well-fed one.
etc.
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Introduction Modeling

Dynamics in discrete vs. continuous time
We can measure time in discrete steps: day 0, day 1,
day 2, . . . ; year 1999, year 2000, year 2001, . . .

Assume we know xt, the value of the state variable at
time-step t.

The value at the next time-step is obtained by a
recursion relation: xt�1 � . . .

or by a difference equation: ∆x � . . .

The recursion relation and difference equation are
related of course, because ∆x � xt�1 � xt and
xt�1 � xt �∆x.

We can repeatedly use the recursion or difference
equation to obtain also xt�2, xt�3, xt�4 . . .

And also go backward in time to derive past values:
xt�1, xt�2, . . .
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Introduction Modeling

Dynamics in discrete vs. continuous time
We can also measure time along a continuous scale:
21.3 sec since beginning of experiment; 1.7 years since
birth, . . .

In such cases, a law of dynamics takes the form of a
differential equation

For example, Newton’s second law of motion and law
of gravitation.

In mathematical form: dx{dt � . . .

It describes the time-derivative (= rate of change) of
the state variable.

By solving, we get the the time-trajectory xptq.

xptq = a function of time that provides the value of the
state variable for every value of the time coordinate, t.
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Introduction Modeling

Extremum principles

In many cases, the natural system would tend to
change towards a maximum or minimum (collectively,
extremum) of some quantity.

In mechanics – minimum energy, minimum action.

In thermodynamics – maximum entropy.

In biology, evolution by natural selection can serve as
an extremum principle.

The “fitness” improves over the course of phenotypic
evolutionØ Trait values would change over the course
of evolution in the direction of increasing “fitness”.
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Introduction Modeling

Why extremum principles are useful?

Examples of applying extremum principle

-

6

“fitness”

State

l

l

We can predict the state of the system in the long-term,
without the need to know the dynamics and the
time-trajectory the system followed to get to that state.
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Introduction Modeling

Optimization
Sometimes we want to maximize or minimize some other
invented quantity, which depends on the problem we are
trying to solve.

In economics – Maximize profit to cost ratio; Maximize
profit from investment portfolios; Minimizing risk of
bankruptcy;

In engineering – maximize signal-to-noise ratio; minimize
energy loss / dissipation;

In biology – maximize “fitness” – the optimal trait value
or the optimal phenotype is the one for which “fitness” is
highest.

If evolution proceeds by natural selection we expect to
eventually obtain the phenotype with the highest “fitness”.
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Introduction Modeling

Optimization models and suboptimal
observations

Usually, we do not observe the predicted optimal trait value
in nature.

Nature is complex – model may not include all causes of
variability among individuals, populations, species, etc.

Evolution takes time – We may not yet have reached
the maximum value.

Environments change – The optimal value in the
(recent) past might have been different.

Natural selection requires variation – Not enough
genetic variation in the population to allow for evolution
to optimal value.
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Introduction Modeling

Optimization models and suboptimal
observations

Usually, we do not observe the predicted optimal trait value
in nature.

Nonetheless optimization models are still useful because:

They are based on a valid biological rationale –
evolution by natural selection.

They provide quantitative predictions that can be
compared to prediction.

They establish the direction that trait evolution should
take.
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