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Trade-offs

Acquisition and allocation
However, often when measuring trade-offs in the fields
or in the lab we encounter positive correlations
between life-history traits, rather than negative, as
expected from the existence of a trade-off.

Females that lay more eggs on day 1, also lay more
eggs on day 2, 3, . . .

This is usually a result of variation among individuals in
the total amount of resources that they acquired.

In order to observe the trade-off we first must correct for
variation in body size, quality, and total amount of
acquired resources among individuals.

e.g., we must only compare females of the same body
size, or remove the effect of body size by statistical
analysis.
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Trade-offs

Consequences of trade-offs to optimization of
life-history traits

1 Constrained optimization
Not all combinations of trait-values are possible or
achievable.
e.g., both high current reproduction and high survival
may not be possible.

2 Optimization depends on the shape of a trade-off
curve.
Whether a trade-off curve is linear, concave-up or
concave-down may affect the outcome of
optimization – i.e., the optimal trait values.
In particular, whether the optimum would have
intermediate values or extreme values.
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Trade-offs

Formulating optimization problems
τ = duration of growth period = age at first reproduction.
T = season length.
T � τ = duration of reproductive investment.
b = rate of increase in biomass production.
fitness = cumulative biomass investment in reproduction.

fpτq � bτpT � τq

The optimization problem is formulated as:

max
τ
fpτq , τ P r0, T s

Maximize the function fpτq over all possible values of τ
between 0 and T .
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Trade-offs

Formulating optimization problems
τ = duration of growth period = age at first reproduction.
T = season length.
ρ = duration of reproductive investment.
b = rate of increase in biomass production.
fitness = cumulative biomass investment in reproduction.

fpτ, ρq � bτρ

The constrained optimization problem is formulated as:

max
τ,ρ

fpτ, ρq , τ, ρ P r0, T s

Maximize the function fpτ, ρq over all possible values of τ
and ρ, subject to the constraint τ � ρ� T � 0.
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Trade-offs

Consequences of trade-offs to optimization of
life-history traits

1 Constrained optimization
Not all combinations of trait-values are possible or
achievable.
e.g., both high current reproduction and high survival
may not be possible.

2 Optimization depends on the shape of a trade-off
curve.
Whether a trade-off curve is linear, concave-up or
concave-down may affect the outcome of
optimization – i.e., the optimal trait values.
In particular, whether the optimum would have
intermediate values or extreme values.
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Numerical optimization using R
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Numerical optimization using R

Numerical optimization
We have already seen how to find optimal values using
analytic and graphical methods.

However, a more general approach is to use a set of
many different algorithms that seek the optimum
numerically.

Numerically means using repeated iterations, usually
done by the computer, where in each iteration some
approximation of the fitness function is obtained and
used to calculate an estimate of the optimal value,
which is then inputed as the "initial guess" for the next
iteration.

We repeat that process until convergence is obtained
(hopefully) – i.e., the estimate of the optimal value no
longer changes significantly form one iteration to the
next.
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Numerical optimization using R

Numerical optimization
In R, there are several packages for doing optimization.

We will use the package optimx.

We can install the package either through the
install.packages(...) function, or using the Packages
menu of the console window.

Once the package is installed, we can load it into our
current R session, using the function library(...), or
again through the Packages menu.

Note that functions and help on the package and its
functions are not available until you have loaded the
package into the Current R session.

Of course, you can use library(...) inside your R-script,
so the script would do the loading for you.
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Numerical optimization using R

Defining our own functions
A function declaration has the following structure

<function name> <- function(<list of argument names>)
{

<list of R commands>

...
return(...)

}

Note that this is similar to assignment into variables.

Example: funfun <- function( numarg, textarg )
{ print(textarg); val <- numargˆ2 + numarg;
return(val) }
Test it by typing
print( 1.5 * funfun( 4, "Learning R is fun!" ) )
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Numerical optimization using R

Default values of arguments
We can define default values for arguments.

We do it using the = sign within the function declaration.

Example:
funfun <- function( numarg = 5, textarg = "**
Default text **" )
{ print(textarg); val <- numargˆ2 + numarg;
return(val) }

Test it by typing
1 funfun( 4, "Learning R is fun!" )
2 funfun( 4 )
3 funfun()

If we want to change only the second argument
1 funfun( , "R is fun!" )
2 funfun( textarg = "Good morning" )
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Numerical optimization using R

Default values of arguments

Or input them in a different order
1 funfun( textarg = "fun fun fun!", numarg = 3)

We can use the explicit names of the arguments, as
defined in the function declaration, when setting values
of arguments during a function call.

In that case, we don’t need to observe the original
order of the arguments.

Example: foo <- function(x, y, z) {...}

The function call foo( z = 3, x = 1, y = 2 )
is identical to the call foo( 1, 2, 3 )
but different than foo( 3, 1, 2 ).

We have already seen this syntax with the plot function.
plot( x, y, xlab = ..., type = ..., ylab = ...)
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Numerical optimization using R

Numerical solution of the annual plant problem
The first step is to define the fitness function.

1 Create a new script: AnnualPlant.r

2 Add the following command lines to the script file:

1 Fitness <- function( tau, T, b ) {
fitnessVal <- b * tau * ( T - tau )
return( fitnessVal )

}

3 Save and run the script.

4 Now the function Fitness has been defined. In the
console window, you can call the function with different
values of tau, T and b, and observe the results.

5 For example:
Fitness( 3, 10, 0.5 ) Enter ÝÑ 10.5
Fitness( 100, 100, 3 ) Enter ÝÑ 0
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Numerical optimization using R

Numerical solution of the annual plant problem
1 Add the following command lines to the script file:

1 library(optimx)
2 Fitness <- function( tau, T, b ) {

fitnessVal <- b * tau * ( T - tau )
return( fitnessVal )

}
3 tauInitial <- 1
4 seasonLength <- 10
5 productionParam <- 2
6 controlList <- list( maximize = TRUE )
7 sol <- optimx( par = tauInitial, fn = Fitness, T =

seasonLength, b = productionParam, control =
controlList )

8 cat( "The optimal value is:\n" )
9 print(sol$par)

2 Save and run the script.
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Numerical optimization using R

Numerical solution of the annual plant problem
The call to optimx has the following structure:

<result> <- optimx( par = <initial guess>,
fn = <function to minimize/maximize>,
<additional parameters that the function requires>,
control = <optional parameters of algorithms>,

<additional optional arguments of optimx> )

Providing the initial guess par, and the function to
minimize/maximizefn, including any additional parameters of
that function are the minimum requirements.

Other arguments of optimx (e.g., control) are optional, and
used depending on what we want optimx to do.

The <result> variable is an object of type list, and contains
all kind of information on the performance of optimx

We can access the estimated optimal value through
<result>$par
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