
Lecture 5

Numerical Optimization

Dr. Ido Filin
ifilin@univ.haifa.ac.il

22 November 2012

Outline

1 Numerical optimization using R

2 More advanced plotting

3 The annual plant problem with mortality

OUTLINE 2/ 10

Numerical optimization using R

Numerical optimization
We have already seen how to find optimal values using
analytic and graphical methods.

However, a more general approach is to use a set of
many different algorithms that seek the optimum
numerically.

Numerically means using repeated iterations, usually
done by the computer, where in each iteration some
approximation of the fitness function is obtained and
used to calculate an estimate of the optimal value,
which is then inputed as the "initial guess" for the next
iteration.

We repeat that process until convergence is obtained
(hopefully) – i.e., the estimate of the optimal value no
longer changes significantly form one iteration to the
next.

OUTLINE 3/ 10

Numerical optimization using R

Numerical optimization
In R, there are several packages for doing optimization.

We will use the package optimx.

We can install the package either through the
install.packages(...) function, or using the Packages
menu of the console window.

Once the package is installed, we can load it into our
current R session, using the function library(...), or
again through the Packages menu.

Note that functions and help on the package and its
functions are not available until you have loaded the
package into the Current R session.

Of course, you can use library(...) inside your R-script,
so the script would do the loading for you.

OUTLINE 3/ 10

Numerical optimization using R

Defining our own functions
A function declaration has the following structure

<function name> <- function(<list of argument names>)
{

<list of R commands>

...
return(...)

}

Note that this is similar to assignment into variables.

Example: funfun <- function(numarg, textarg)
{ print(textarg); val <- numargˆ2 + numarg;
return(val) }
Test it by typing
print(1.5 * funfun(4, "Learning R is fun!"))

OUTLINE 4/ 10

Numerical optimization using R

Default values of arguments
We can define default values for arguments.

We do it using the = sign within the function declaration.

Example:
funfun <- function(numarg = 5, textarg = "**
Default text **")
{ print(textarg); val <- numargˆ2 + numarg;
return(val) }

Test it by typing
1 funfun(4, "Learning R is fun!")
2 funfun(4)
3 funfun()

If we want to change only the second argument
1 funfun(, "R is fun!")
2 funfun(textarg = "Good morning")

OUTLINE 5/ 10

Numerical optimization using R

Default values of arguments

Or input them in a different order
1 funfun(textarg = "fun fun fun!", numarg = 3)

We can use the explicit names of the arguments, as
defined in the function declaration, when setting values
of arguments during a function call.

In that case, we don’t need to observe the original
order of the arguments.

Example: foo <- function(x, y, z) {...}

The function call foo(z = 3, x = 1, y = 2)
is identical to the call foo(1, 2, 3)
but different than foo(3, 1, 2).

We have already seen this syntax with the plot function.
plot(x, y, xlab = ..., type = ..., ylab = ...)

OUTLINE 5/ 10

Numerical optimization using R

Numerical solution of the annual plant problem
The first step is to define the fitness function.

1 Create a new script: AnnualPlant.r
2 Add the following command lines to the script file:

1 Fitness <- function(tau, T, b) {
fitnessVal <- b * tau * (T - tau)
return(fitnessVal) }

3 Save and run the script.
4 Now the function Fitness has been defined. In the

console window, you can call the function with different
values of tau, T and b, and observe the results.

5 For example:

Fitness(3, 10, 0.5) Enter ÝÑ 10.5
Fitness(100, 100, 3) Enter ÝÑ 0

OUTLINE 6/ 10

Numerical optimization using R

Numerical solution of the annual plant problem
1 Add the following command lines to the script file:

1 library(optimx)
2 Fitness <- function(tau, T, b) {

fitnessVal <- b * tau * (T - tau)
return(fitnessVal) }

3 tauInitial <- 1
4 seasonLength <- 10
5 productionParam <- 2
6 controlList <- list(maximize = TRUE)
7 sol <- optimx(par = tauInitial, fn = Fitness, T =

seasonLength, b = productionParam, control =
controlList, method = "nlm", lower = 0, upper =
seasonLength)

8 cat("The optimal value is:\n")
9 print(sol$par)

2 Save and run the script.
OUTLINE 6/ 10

Numerical optimization using R

Numerical solution of the annual plant problem
The call to optimx has the following structure:

<result> <- optimx(par = <initial guess>,
fn = <function to minimize/maximize>,
<additional parameters that the function requires>,
control = <optional parameters of algorithms>,

<additional optional arguments of optimx>)

Providing the initial guess par, and the function to
minimize/maximize fn, including any additional parameters
of that function are the minimum requirements.

Other arguments of optimx (e.g., control) are optional, and
used depending on what we want optimx to do.

The <result> variable is an object of type list, and contains
all kind of information on the performance of optimx

We can access the estimated optimal value through
<result>$par

OUTLINE 6/ 10

Numerical optimization using R

Numerical solution of the annual plant problem

The function to be maximized / minimized must follow a
strict format.

First argument must be the variable to be optimized.

If there are more than one variable to be optimized, the
first argument would be a vector.

Following arguments are the parameters of the
problem.

For example:
fitness <- function(tau, T, b) { ... }

fitness <- function(V, T, b) { tau <- V[1]; ... }

fitness <- function(V, T, b)
{ tau <- V[1]; rho <- V[2]; ... }

OUTLINE 6/ 10

More advanced plotting

Outline

1 Numerical optimization using R

2 More advanced plotting

3 The annual plant problem with mortality

OUTLINE 7/ 10

More advanced plotting

More advanced plotting

plot has additional arguments to control and modify
graphics.

Modify color with col. E.g., col="black", col =
"white", col = "red", col = ""gold4" etc.

We will use "black", "white" and shades of gray.

e.g., "gray0" (= black), "gray20" (= dark gray), "gray57"
(= light gray), "gray78" (= very light gray), "gray100" (=
white).

All shades of gray from 0 to 100 exist.

Color table available in HighLearn.

OUTLINE 8/ 10

More advanced plotting

More advanced plotting
Modify the symbols with pch. This argument gets either a
number or a text character within double quotation
marks.
E.g., pch = 0 (squares), pch = 1 (circles), pch = 23 (filled
diamond), pch = "c" (letter c as symbol), pch = "7" (the
digit 7 as symbol), pch = "*" (asterisk as symbol).

Explore the different numerical values of pch from 0 to
25 to see the different symbols that are available.

Help on these optional arguments and great many
more is through the help for function par (a utility
function for manipulating the graphics parameters).

E.g., lwd to change line width (e.g., 1, 2 ,3.7, 4.2),
lty to change line-type (solid, dashed, dotted etc.).

OUTLINE 8/ 10

More advanced plotting

More advanced plotting
Several curves in one graph.

plot always clears the graphics window before drawing the
curve and axes.

Use the function lines to add a second curve or as many
additional curves as you need.

The call to lines is very similar to to that of plot:
e.g., lines(x, y, pch = ..., col = ..., ...)

Some arguments of plot (such as type) cannot be used.

As a rule, begin your graph with a call to plot that draws the
first curve (with its formatting: pch, col, lwd, etc.) and
defines axis labels, curve type, limits of axes (with xlim and
ylim), etc.

Then use lines repeatedly to add additional curves. Again
use pch, col, lwd and so on to manipulate the appearance
of each additional curve.

OUTLINE 8/ 10

The annual plant problem with mortality

Outline

1 Numerical optimization using R

2 More advanced plotting

3 The annual plant problem with mortality

OUTLINE 9/ 10

The annual plant problem with mortality

The annual plant problem with mortality

R0 �

» 8

0
lpaqbpaqda

In our original annual plant problem, there is no mortality,
i.e.,lpaq � 1 for all a within the season, and so:

R0 �

» τ
0
p1 � 0q da�

» T
τ
p1 � bτq da�

» 8

T
0 da ,

the sum of contributions from growth period, reproductive
period, and off-season.
It is easy to see that this expression simply gives us

R0 � bτpT � τq ,

which is the fitness function that we have used for this
problem.

OUTLINE 10/ 10

The annual plant problem with mortality

The annual plant problem with mortality

R0 �

» 8

0
lpaqbpaqda

However, if there is a fixed rate of mortality within the
season, survival is no longer fixed to 1. In this case
lpaq � e�µa, where µ is the mortality rate parameter. And so
the expression for R0 becomes

R0 �

» τ
0
pe�µa � 0q da�

» T
τ
pe�µa � bτq da�

» 8

T
0 da ,

We obtain in this case a different expression for fitness,

R0 � e�µτ
�
bτ �

1

µ

�
1� e�µpT�τq

	�
,

OUTLINE 10/ 10

The annual plant problem with mortality

The annual plant problem with mortality

R0pτq � e�µτ
�
bτ �

1

µ

�
1� e�µpT�τq

	�
,

This expression has an intuitive interpretation:
Fitness is given by survival probability to first reproduction
multiplied by the the expected mean reproductive output
of a reproducing individual (once it survived to first
reproduction).
Expected mean reproductive output takes into account
that mortality may also occur at any time during the
reproductive phase of the life-cycle.

1 Create a different version of the R-script with this fitness
function.

2 What would be the effect of mortality on optimal age
at first reproduction, τ� ?

OUTLINE 10/ 10

	Numerical optimization using R
	More advanced plotting
	The annual plant problem with mortality

