
Lecture 4

Second R Tutorial:
For-loops and Functions

Dr. Ido Filin
ifilin@univ.haifa.ac.il

12 November 2012

Outline

1 For-loops

2 Functions

3 Errors, readability and comments

OUTLINE 2/ 11

For-loops

R - scripts
18 Create a new script and save it with the name

FirstPopModel.r
19 Write the following command lines into the script file:

1 Ninitial <- 10
2 lambda <- 2
3 N <- numeric(10)
4 Time <- 0:9
5 N[1] <- Ninitial
6 N[2] <- lambda * N[1]
7 N[3] <- lambda * N[2]
8 N[4] <- lambda * N[3]
9 . . . (i.e., repeat the previous style of commands,

each time incrementing the indexes)
10 N[10] <- lambda * N[9]
11 print(N)
12 plot(Time, N)

20 Save the new commands that you added to the script
file by pressing Ctrl + S

OUTLINE 3/ 11

For-loops

R - scripts
18 Create a new script and save it with the name

FirstPopModel.r
19 Write the following command lines into the script file:

1 Ninitial <- 10
2 lambda <- 2
3 N <- numeric(10)
4 Time <- 0:9
5 N[1] <- Ninitial
6 N[2] <- lambda * N[1]
7 N[3] <- lambda * N[2]
8 N[4] <- lambda * N[3]
9 . . . (i.e., repeat the previous style of commands,

each time incrementing the indexes)
10 N[10] <- lambda * N[9]
11 print(N)
12 plot(Time, N)

20 Save the new commands that you added to the script
file by pressing Ctrl + S

OUTLINE 3/ 11

For-loops

R - scripts
18 Create a new script and save it with the name

FirstPopModel.r
19 Write the following command lines into the script file:

1 Ninitial <- 10
2 lambda <- 2
3 N <- numeric(10)
4 Time <- 0:9
5 N[1] <- Ninitial

6 for (index in 2:10)
{ N[index] <- lambda * N[index-1] }

7 print(N)
8 plot(Time, N)

20 Save the new commands that you added to the script
file by pressing Ctrl + S

OUTLINE 3/ 11

For-loops

For-loops in R

A for-loop has the following structure

for (<an index variable> in <vector of values>)
{

<list of R commands>

...
}

Example: sum values and print their square.
sumVar <- 0
for (val in c(0.1, -1, 2.5, pi, 0.53e+3))
{

sumVar <- sumVar + val
print(valˆ2)

}
OUTLINE 4/ 11

For-loops

For-loops in R

We use for-loops because we are lazy and don’t want
to write the same operation repeatedly.

Especially, if we need to repeat a large number of times.

e.g., calculate population size for 1000 generations.

Less typing ÝÑ Less room for mistakes and errors.

OUTLINE 4/ 11

For-loops

For-loops in R
1 Create a new script and save it with the name

SecondPopModel.r

2 Write the following command lines into the script file:
1 genNum <- 32

2 Ninitial <- 1

3 lambda <- 2

4 N <- numeric(genNum)

5 Time <- 24 * (0 : (genNum - 1))

6 N[1] <- Ninitial

7 for (index in 2:genNum)
{ N[index] <- lambda * N[index-1] }

8 print(N)

9 plot(Time, N , xlab = "Time[hours]")

3 Save and run the script.

OUTLINE 4/ 11

Functions

Outline

1 For-loops

2 Functions

3 Errors, readability and comments

OUTLINE 5/ 11

Functions

Functions in R

Functions provide another way to easily and safely
repeat the same set of operations.

For example: consider the command
w <- xˆ2 + y - zˆ3

Later in our program, we want to do the same
calculation again, but with a different set of variables:
w <- alphaˆ2 + beta - gammaˆ3

Or change order among x, y, z:
w <- yˆ2 + z - xˆ3

OUTLINE 6/ 11

Functions

Functions in R
Instead of writing the same formula each time we can
define a function
fooFunc <- function(x,y,z)

{ return(xˆ2 + y - zˆ3) }

Then we can substitute the previous calculations with
the following function call commands:

w <- fooFunc(x, y, z)
w <- fooFunc(alpha, beta, gamma)
w <- fooFunc(y, z, x)

Saves the trouble of typing the same formula
repeatedly, and consequently, reduces risk of errors.

Clearly, functions become even more valuable when
the repeated task includes several commands, all of
which would have had to be rewritten again and again.

OUTLINE 6/ 11

Functions

Arguments of a function

Input(s) ÝÑ function ÝÑ Output

Different input ÝÑ Different output

In R, the inputs are provided to the function through a
comma-separated list of arguments.

We have already seen several functions:
plot(x, y, ...) takes two (or more) arguments.

getwd() has no arguments.
print(...) takes one argument.

Other built-in functions:
sqrt(x), sin(x), cos(x), tan(x), asin(x), acos(x),

factorial(x), max(v), min(v), mean(v), var(v),
sd(v), setwd(...), coplot(...), boxplot(...),
lines(...), lm(...), anova(...) etc.

OUTLINE 7/ 11

Functions

Return value of a function
Input(s) ÝÑ function ÝÑ Output

Different input ÝÑ Different output

In R, the output of a function is given by its return value.

The return value can then be used in calculations,
assignments etc.

For example:
vectorOfSineVals <- sin(c(0, pi/6, pi/3, pi/2))
y <- 2 * sqrt(3) + factorial(4)

The return value can be a number, a vector, a text
string, or any other data type.

It is important to read the documentation of a function
in order to know what is the return value of the function.

OUTLINE 8/ 11

Functions

Defining our own functions
1 Create a new script: ThirdPopModel.r

2 Write the following command lines into the script file:
1 genNum <- 32
2 Ninitial <- 1
3 lambda <- 2
4 popGrowth <- function(popSize, growthParam)

{ newVal = growthParam * popSize; return(newVal) }
5 N <- numeric(genNum)
6 Time <- 24 * (0 : (genNum - 1))
7 N[1] <- Ninitial
8 for (index in 2:genNum)

{ N[index] <- popGrowth(N[index-1], lambda) }
9 print(N)

10 plot(Time, N , xlab = "Time[hours]")

3 Save and run the script.
OUTLINE 9/ 11

Functions

Defining our own functions
A function declaration has the following structure

<function name> <- function(<list of argument names>)
{

<list of R commands>

...
return(...)

}

Note that this is similar to assignment into variables.

Example: funfun <- function(numarg, textarg)
{ print(textarg); val <- numargˆ2 + numarg;
return(val) }
Test it by typing
print(1.5 * funfun(4, "Learning R is fun!"))

OUTLINE 9/ 11

Functions

Default values of arguments
We can define default values for arguments.

We do it using the = sign within the function declaration.

Example:
funfun <- function(numarg = 5, textarg = "**
Default text **")
{ print(textarg); val <- numargˆ2 + numarg;
return(val) }

Test it by typing
1 funfun(4, "Learning R is fun!")
2 funfun(4)
3 funfun()

If we want to change only the second argument
1 funfun(, "R is fun!")
2 funfun(textarg = "Good morning")

OUTLINE 10/ 11

Functions

Default values of arguments

Or input them in a different order
1 funfun(textarg = "fun fun fun!", numarg = 3)

We can use the explicit names of the arguments, as
defined in the function declaration, when setting values
of arguments during a function call.

In that case, we don’t need to observe the original
order of the arguments.

Example: foo <- function(x, y, z) {...}

The function call foo(z = 3, x = 1, y = 2)
is identical to the call foo(1, 2, 3)
but different than foo(3, 1, 2).

We have already seen this syntax with the plot function.
plot(x, y, xlab = ..., type = ..., ylab = ...)

OUTLINE 10/ 11

Functions

Default values of arguments
1 Change ThirdPopModel.r as follows.

1 genNum <- 32
2 Ninitial <- 1
3 lambda <- 3
4 popGrowth <- function(popSize = 1, growthParam = 2)

{ newVal = growthParam * popSize; return(newVal) }
5 N <- numeric(genNum)
6 Time <- 24 * (0 : (genNum - 1))
7 N[1] <- Ninitial
8 for (index in 2:genNum)

{ N[index] <- popGrowth(popSize = N[index-1]) }
9 print(N)

10 plot(Time, N , xlab = "Time[hours]")

2 Save and run the script.

3 What is the finite rate of increase of this population?
OUTLINE 10/ 11

Errors, readability and comments

Outline

1 For-loops

2 Functions

3 Errors, readability and comments

OUTLINE 11/ 11

	For-loops
	Functions
	Errors, readability and comments

