Lecture 4

Second R Tutorial:

For-loops and Functions

Dr. Ido Filin

ifilin@univ.haifa.ac.il

12 November 2012

° For-loops
9 Functions

e Errors, readability and comments

OUTLINE

For-loops

R - scripfts

@ Create a new script and save it with the name
FirstPopModel.r

@ Write the following command lines into the script file:

© Ninitial <- 10

@ lambda <- 2

© N <- numeric(10)

Q Time <- 0:9

O N[1] <- Ninitial

O N[2] <- lambda * N[1]

@ N[3] <- lambda * N[2]

O N[4] <- lambda * N[3]

Q ... (i.e., repeat the previous style of commands,
each time incrementing the indexes)

@ N[10] <- lambda * N[9]

@ print()

@ plot(Time, N)

@ Save the new commands that you added to the script

file by pressing +S

For-loops

R - scripfts

@ Create a new script and save it with the name
FirstPopModel.r

@ Write the following command lines into the script file:
Ninitial <- 10

lambda <- 2

N <- numeric(10)

Time <- 0:9

N[1] <- Ninitial

N[2] <- lambda * N[1]

N[3] <- lambda * N[2]

N[4] <- lambda * N[3]

... (i.e., repeat the previous style of commands,
each time incrementing the indexes)

N[10] <- lambda * N[9]

print (N)

plot(Time, N)

@ Save the new commands that you added to the script

file by pressing [CHl| + S

PO 000000000

For-loops

R - scripts

@ Create a new script and save it with the name
FirstPopModel.r

@ Write the following command lines into the script file:
© Ninitial <- 10
@ lambda <- 2
© N <- numeric(10)
Q Time <- 0:9
O N[1] <- Ninitial

O for (index in 2:10)
{ N[index] <- lambda * N[index-1] }

@ print(N)
O plot(Time, N)

@ Save the new commands that you added to the script

file by pressing [CHl| + S

For-loops
For-loops in R

@ A for-loop has the following structure

for (<anindex variable> in <vector of values>)

{

<list of R commands>

¥

@ Example: sum values and print their square.
sumVar <- 0
for (val in ¢(0.1, -1, 2.5, pi, 0.53e+3))
{
sumVar <- sumVar + val
print(val®2)

For-loops
For-loops in R

@ We use for-loops because we are lazy and don’t want
to write the same operation repeatedly.

@ Especidlly, if we need to repeat a large number of times.

e.g., calculate population size for 1000 generations.

@ Less typing — Less room for mistakes and errors.

For-loops
For-loops in R

@ Create a new script and save it with the name
SecondPopModel.r

@ Write the following command lines into the script file:

OO0 ©00000O0OC

genNum <- 32

Ninitial <- 1

lambda <- 2

N <- numeric(genNum)

Time <- 24 * (0 : (genNum - 1))
N[1] <- Ninitial

for (index in 2:genNum)
{ N[index] <- lambda * N[index-1] }

print (N)
plot(Time, N , xlab = "Time[hours]")

© Save and run the script.

Functions
Outline

9 Functions

OUTLINE

Functions
Functions in R

@ Functions provide another way to easily and safely
repeat the same set of operations.

@ For example: consider the command
w<-x"2+y-2"3

@ Later in our program, we want to do the same
calculation again, but with a different set of variables:
w <- alpha®2 + beta - gamma”3

@ Or change order among x, y, z:
w<-y'2+z-x"3

Functions
Functions in R

@ Instead of writing the same formula each time we can
define a function
fooFunc <- function(x,y,z)
{ return(x"2 +y - z°3) }

@ Then we can substitute the previous calculations with
the following function call commands:
@ w <- fooFunc(x, y, z)
@ w <- fooFunc(alpha, beta, gamma)
@ w <- fooFunc(y, z, x)

@ Saves the trouble of typing the same formula
repeatedly, and consequently, reduces risk of errors.

@ Clearly, functions become even more valuable when
the repeated task includes several commands, all of
which would have had o be rewritten again and again.

Functions
Arguments of a function
e Input(s) — — Output

@ Different input — Different output

@ In R, the inputs are provided to the function through a
comma-separated list of arguments.

@ We have already seen several functions:
plot(x, y, ...) takestwo (or more) arguments.
getwd () has no arguments.
print(...) takes one argument.

@ Other built-in functions:
sqrt(x), sin(x), cos(x), tan(x), asin(x), acos(x),
factorial(x), max(v), min(v), mean(v), var(v),
sd(v), setwd(...), coplot(...), boxplot(...),
lines(...), 1Im(...), anova(...) efc.

Functions
Return value of a function

@ Input(s) — — Output

@ Different input — Different output
@ In R, the outfput of a function is given by its return value.

@ The return value can then be used in calculations,
assignments etfc.

@ For example:
vector0fSineVals <- sin(c(0, pi/6, pi/3, pi/2))
y <- 2 % sqrt(3) + factorial(4)

@ The return value can be a number, a vector, a text
string, or any other data type.

@ It is important to read the documentation of a function
in order to know what is the return value of the function.

Functions

Defining our own functions

@ Create a new script: ThirdPopModel .r

@ Write the following command lines into the script file:

@ genlum <- 32
@ Ninitial <- 1
© lambda <- 2
O popGrowth <- function(popSize, growthParam)

{ newVal = growthParam * popSize; return(newVal) }
© N <- numeric(genNum)
O Time <- 24 * (0 : (genNum - 1))
@ N[1] <- Ninitial
O for (index in 2:genNum)

{ N[index] <- popGrowth(N[index-1], lambda) }

@ print()
@® plot(Time, N , xlab = "Time[hours]")

© Save and run the script.

Functions
Defining our own functions

@ A function declaration has the following structure

<function name> <- function (<list of argument names>)

{

<list of R commands>

return(...)
}

@ Note that this is similar to assignment into variables.

@ Example: funfun <- function(numarg, textarg)
{ print(textarg); val <- numarg”2 + numarg;
return(val)
Test it by typing
print(1.5 * funfun(4, "Learning R is fun!"))

Functions
Default values of arguments

@ We can define default values for arguments.

@ We do it using the = sign within the function declaration.

@ Example:
funfun <- function(numarg = 5, textarg = "*x
Default text *x")
{ print(textarg); val <- numarg”2 + numarg;
return(val) }

@ Test it by typing
funfun(4, "Learning R is fun!")
Q@ funfun(4)
©Q funfun(

@ If we want to change only the second argument
@ funfun(, "R is fun!")
© funfun(textarg = "Good morning")

Functions
Default values of arguments

@ Orinput them in a different order
@ funfun(textarg = "fun fun fun!", numarg = 3)

@ We can use the explicit names of the arguments, as
defined in the function declaration, when setfting values
of arguments during a function call.

@ In that case, we don’t need to observe the original
order of the arguments.

@ Example: foo <- function(x, y, z) {...}

The function call foo(z = 3, x =1, y = 2)
is identical to the call foo(1, 2, 3)
but different than foo(3, 1, 2).

@ We have already seen this syntax with the plot function.
plot(x, y, xlab = ..., type = ..., ylab = ...)

Functions
Default values of arguments

@ Change ThirdPopModel.r as follows.

Q@ genNum <- 32
@ Ninitial <- 1
© lambda <- 3
O popGrowth <- function(popSize = 1, growthParam = 2)
{ newVal = growthParam * popSize; return(newVal) }
© N <- numeric(genNum)
O Time <- 24 * (0 : (genNum - 1))
@ N[1] <- Ninitial
O for (index in 2:genNum)
{ N[index] <- popGrowth(popSize = N[index-1]) }
Q print(N)
@® plot(Time, N , xlab = "Time[hours]")

@ Save and run the script.

© What is the finite rate of increase of this population?

Errors, readability and comments
Outline

e Errors, readability and comments

OUTLINE

	For-loops
	Functions
	Errors, readability and comments

