Unregulated population growth continued and summarized

Dr. Ido Filin ifilin@univ.haifa.ac.il

19 November 2012

Outline

- 2 Errors, readability and comments
- 3 Geometric growth model
- Exponential growth model
- 5 Summary of unregulated population growth

Defining our own functions

- Create a new script: ThirdPopModel.r
- Write the following command lines into the script file:
 - O genNum <- 32</p>
 - 2 Ninitial <- 1</p>
 - 3 lambda <- 2</pre>
 - popGrowth <- function(popSize, growthParam)
 { newVal <- growthParam * popSize; return(newVal) }
 </pre>
 - N <- numeric(genNum)
 </pre>
 - **o** Time <- 24 * (0 : (genNum 1))
 - N[1] <- Ninitial</p>
 - for (index in 2:genNum)
 - { N[index] <- popGrowth(N[index-1], lambda) }
 - print(N)
 - plot(Time, N, xlab = "Time[hours]")
- Save and run the script.

Defining our own functions

• A function declaration has the following structure

```
return(...)
}
```

• Note that this is similar to assignment into variables.

```
• Example: funfun <- function( numarg, textarg )
{ print(textarg); val <- numarg<sup>2</sup> + numarg;
return(val) }
Test it by typing
print( 1.5 * funfun( 4, "Learning R is fun!" ) )
```

Default values of arguments

- We can define default values for arguments.
- We do it using the = sign within the function declaration.
- Example: funfun <- function(numarg = 5, textarg = "** Default text **") { print(textarg); val <- numarg² + numarg; return(val) }
- Test it by typing
 funfun(4, "Learning R is fun!")
 funfun(4)
 funfun()
- If we want to change only the second argument
 - funfun(, "R is fun!")
 - 2 funfun(textarg = "Good morning")

Default values of arguments

- Or input them in a different order
 funfun(textarg = "fun fun fun!", numarg = 3)
- We can use the explicit names of the arguments, as defined in the function declaration, when setting values of arguments during a function call.
- In that case, we don't need to observe the original order of the arguments.
- Example: foo <- function(x, y, z) {...} The function call foo(z = 3, x = 1, y = 2) is identical to the call foo(1, 2, 3) but different than foo(3, 1, 2).
- We have already seen this syntax with the plot function.
 plot(x, y, xlab = ..., type = ..., ylab = ...)

Default values of arguments

- Change ThirdPopModel.r as follows.
 - genNum <- 32
 - 2 Ninitial <- 1</p>
 - 3 lambda <- 3</pre>
 - opGrowth <- function(popSize = 1, growthParam = 2)
 { newVal <- growthParam * popSize; return(newVal) }</pre>
 - N <- numeric(genNum)
 </pre>
 - **o** Time <- 24 * (0 : (genNum 1))
 - N[1] <- Ninitial</p>
 - of for (index in 2:genNum)
 { N[index] <- popGrowth(popSize = N[index-1]) }
 </pre>
 - 9 print(N)
 - plot(Time, N, xlab = "Time[hours]")
- Save and run the script.
- What is the finite rate of increase of this population?

- 2 Errors, readability and comments
- 3 Geometric growth model
- 4 Exponential growth model
- 5 Summary of unregulated population growth

Errors, readability and comments Erros, readability and comments

- Read errors carefully they guide you to the type and location of the problem.
- Choose meaningful names for variables.
 plot(time,popSize)
 is clearer to read and understand, compared to:
 plot(T,N)
- Similarly, use spaces.

time <- 0:4 ; popSize <- c(10, 20, 40, 80, 160)
plot(time, popSize, xlab = "Time[hours]", ylab =
"Population size", type = "b")</pre>

is clearer to read than:

```
time<-0:4;popSize<-c(10,20,40,80,160)
plot(time,popSize,xlab="Time[hours]",ylab="Population
size",type="b")</pre>
```

Erros, readability and comments

- Similarly, write each command in a new line, separate different sections of the program with a blank line, and indent!
- 2 For example, compare:

```
PopGrowth <- function( popSize, growthParam )
{ newPopSize <- popSize * growthParam ; return(
newPopSize ) }
genNum <- 10; Ninitial <- 2
N <- numeric(genNum) N[1] <- Ninitial
for ( index in 2:genNum )
{ N[index] = PopGrowth( N, 2 ) }</pre>
```

Errors, readability and comments

Erros, readability and comments

```
2 ..... with the following
```

```
PopGrowth <- function( popSize, growthParam )</pre>
{
  newPopSize <- popSize * growthParam
  return( newPopSize )
}
genNum <- 10
Ninitial <-2
N <- numeric(genNum)
N[1] <- Ninitial
for ( index in 2:genNum )
ł
   N[index] = PopGrowth( N, 2 )
}
```

Errors, readability and comments

Erros, readability and comments

```
I .... and with comments
   PopGrowth <- function( popSize, growthParam )</pre>
   ł
     # New population size using geometric model.
     newPopSize <- popSize * growthParam
     return( newPopSize )
   }
   # Parameters.
   genNum <- 10
   Ninitial <-2
   # Initialization of variables.
   N <- numeric(genNum)
   N[1] <- Ninitial
   # For-loop to calculate population trajectory.
   for ( index in 2:genNum )
```

```
OUTLINE
```

ſ

Outline

- 2 Errors, readability and comments
- 3 Geometric growth model
- 4 Exponential growth model
- 5 Summary of unregulated population growth

Geometric model of population growth

Recursion relation/Difference equation of geometric growth

$$N_{t+1} = \lambda N_t \iff \Delta N = (\lambda - 1)N_t$$

- λ is called finite rate of increase.
- It is the average/mean per-capita multiplication factor per one time-step.
- Average in the sense that some individuals contribute negative growth (die), some contribute positive growth (reproduce), some contribute zero growth (survive but do not reproduce). λ represents a weighted average of these different contributions.
- Classification of geometric growth:
 - $\lambda > 1 \Rightarrow \Delta N > 0$, population grows.
 - $\lambda = 1 \Rightarrow \Delta N = 0$, population size unchanged.
 - $0 \leq \lambda < 1 \Rightarrow \Delta N < 0$, population declines.

The net reproductive rate, R_0

- A second important parameter is the **net reproductive** rate, R₀, which is the **expected** lifetime reproductive output of a female.
- Example: for unicellulars, when time between divisions represents lifetime,
 - if there is no mortality, $R_0 = 2$.
 - if there is 25% mortality between divisions, $R_0 = 0.25 * 0 + 0.75 * 2 = 1.5$
 - if there is 50% mortality between divisions, $R_0 = 0.5 * 0 + 0.5 * 2 = 1$
 - etc.
- If we measure population growth in time-steps of 1 lifetime, $\lambda = R_0$.
- If in time-steps of 2 lifetimes, $\lambda = R_0^2$.
- If in time-steps of 3 lifetimes, $\lambda = R_0^3$.

The net reproductive rate, R_0

• Generalizing:

If T is lifetime / generation time, and τ is the time-step of the model, The relationship between λ and R_0 is

$$\lambda = R_0^{(\tau/T)}$$

- So, for example, if we measure population growth in time-steps of 10 generation times, $\tau = 10T$, then $\lambda = R_0^{10}$.
- But what about when $\tau < T$ we measure population growth in time-steps shorter than lifetime / generation time.
- Does this general relation still apply?

Synchronous and asynchronous reproduction

Synchronous reproduction: $\tau = T$.

Synchronous and asynchronous reproduction

Synchronous reproduction: $\tau = T/2$.

Synchronous and asynchronous reproduction

Synchronous reproduction: $\tau = T/4$.

Synchronous and asynchronous reproduction

But if we break the synchrony in reproduction.

For example, half the cells reproduce at noon and half at midnight.

Asynchronous reproduction: $\tau = T$.

Synchronous and asynchronous reproduction

Asynchronous reproduction: $\tau = T/2$.

Synchronous and asynchronous reproduction

Asynchronous reproduction: $\tau = T/4$.

Synchronous and asynchronous reproduction

Even more asynchronous reproduction:

four "subpopulations", based on timing of division.

Outline

- 2 Errors, readability and comments
- 3 Geometric growth model
- Exponential growth model
- 5 Summary of unregulated population growth

Exponential model of population growth

In the limit of completely asynchronous reproduction – reproduction events are continuously distributed over time – we obtain the **exponential growth** model.

- \bullet The population growth trajectory is given by $N(t) = N_0 e^{rt} \label{eq:N}$
- The population growth rate is given by the differential equation

$$dN/dt = rN$$

- r is called instantaneous rate of increase.
- r has units of rate or 1/time (i.e., min⁻¹, day⁻¹, year⁻¹, etc.) – unlike λ and R₀, which are pure numbers.

Exponential model of population growth

In the limit of completely asynchronous reproduction – reproduction events are continuously distributed over time – we obtain the **exponential growth** model.

• The three parameters are related according to

$$r = \frac{\ln \lambda}{\tau} = \frac{\ln R_0}{T}$$

• Classification of geometric growth:

• $r > 0 \Rightarrow dN/dt > 0$, population grows.

- $r = 0 \Rightarrow dN/dt = 0$, population size unchanged.
- $r < 0 \Rightarrow dN/dt < 0$, population declines.

Outline

- 2 Errors, readability and comments
- 3 Geometric growth model
- 4 Exponential growth model
- 5 Summary of unregulated population growth

Summary of unregulated population growth The BIDE model

• A fundamental ecological fact of life:

$$N_{t+1} = N_t + B + I - D - E$$

- Change in population size is the sum of positive contributions (birth and immigration) and negative contributions (death and emigration).
- While demonstrating those contributions in a compact form, this model says very little else.
- If B, I, D, E are fixed constants, we get the arithmetic model → not very useful.
- If B, I, D, E depend on population size (as in the geometric model), the above expression hardly displays this dependence → again, not very useful.

Summary of unregulated population growth

Birth, death and migration rates

• We can modify the BIDE model:

 $N_{t+1} = N_t + bN_t - dN_t - eN_t + I = (1 + b - d - e)N_t + I$

- In this case, b, d, e are the (per-capita) birth, death and emigration rates.
- They are measured with respect to the original population at time *t*.
- To begin, let us ignore migration, i.e., e = 0, I = 0.
- If at time t + 1 (i.e., after a period of duration τ), all original individuals (N_t) have died, we have: d = 1, $b = R_0$, and so $\lambda = 1 + R_0 1 = R_0$.
- If at time t + 1 three generations have passed (original individuals, daughters and granddaughters are already dead), we have d = 1, $b = R_0^3$, and so $\lambda = 1 + R_0^3 1 = R_0^3$.

Summary of unregulated population growth Birth, death and migration rates

- For time-steps shorter than generation time ($\tau < T$) we have already seen the difference between pure geometric growth and explicitly following occurrences of deaths and births.
- For short time-steps, b and d reflect only mean rates.
- Or, if death and birth occur asynchronously, randomly, and independently,
 - *d* represents probability to die during a single time-step (same for all individuals and at all times).
 - *b* represents the mean per-capita births that occurred in the population during that interval (again, same for all individuals and at all times).

Summary of unregulated population growth

Birth, death and migration rates

$$N_{t+1} = (1 + b - d - e)N_t + I$$

- When studying only a single population, emigration rate, e, has same effect as death rate, d. There is nothing significantly different in a model with emigration (e and d can combine into a single "effective death" rate).
- A population model with nonzero immigration, *I*, is no longer purely geometric, but represents a combination of geometric and arithmetic growth models.

Birth, death and migration rates

- For the exponential growth model, *b* and *d* are "real" rates, i.e., have units of 1/time.
- For a very short time interval τ the total number of births in the population would be $bN\tau$, and the total number of deaths would be $dN\tau$.
- Or, the probability to die during the interval is $d\tau$, and the mean number of births per-capita is $b\tau$.
- In the exponential model r = b d.
- d enforces a statistical distribution of lifetimes where the life expectancy (mean lifetime) is 1/d.
- R_0 is mean lifetime reproduction, therefore $R_0 = b/d$.

More detailed geometric and exponential models

r and λ may themselves be composed of more fundamental parameters:

- Give population age-.structure, R_0 and r are actually derived from age-dependent schedules of survival and reproduction.
- Temperature dependence, nutrient concentration, pH-dependence etc. For example:

 $\lambda = \lambda_0 + c *$ (Temperature) + k * (Nutrient concentration)

Summary of unregulated population growth

Comparison between exponential and geometric models

Time	Geometric discrete, $t = 0, 1, 2$	Exponential continuous
Parameter	λ (no units)	r (1/time)
Dynamics	$N_t = \lambda N_t$ $\Delta N = (\lambda - 1)N_t$	dN/dt = rN
Trajectory	$N_t = N_0 \lambda^t$	$N(t) = N_0 e^{rt}$
Growing	$\lambda > 1$	r > 0
Stable	$\lambda = 1$	r = 0
Declining	$0\leqslant\lambda<1$	r < 0

Summary of unregulated population growth Which model should I use?

- The answer most strongly depends on the life-cycle of the organism.
 - Geometric model would fit an organism with synchronous reproduction, or with division of the life-cycle or annual cycle into distinct reproductive and non-reproductive phases (e.g., plants, many insects, landsnails etc.).
 - Exponential model would fit organisms that reproduce asynchronously and do not have distinct reproductive seasons (e.g., humans, tropical animals and plants, unicellulars in a beaker).

 But also depends on the research goals and methodology.
 For example, if we want to model human population size at the end of each decade, a geometric model may serve better.

Summary of unregulated population growth

Which model should I use?

A related issue is that of overlapping vs. nonoverlapping generations.

i.e., whether within a population we can find individuals belonging to different generations (different age- or year-classes).

- Clearly, that depends on the organism: annual plants and insects have nonoverlapping generations, while perennial plants and humans have overlapping generations.
- It is sometimes argued that geometric model fits the former, and exponential the latter.
- However, perennial organisms may fit either geometric or exponential model:

perennial plants fit a geometric model, because they reproduce only at specific times during the year. Humans, however, are better described by an exponential growth model.

• It is the synchrony of reproduction (or lack of it) that is more important in determining the preferred model.

Too many names

- The net reproductive rate, R_0 , has also been called in the literature
 - basic reproductive rate
 - basic reproductive number/ratio
- The finite rate of increase, λ , is sometimes called
 - net reproductive rate
 - fundamental net reproductive rate
 - fundamental per capita rate of increase
- The instantaneous rate of increase, *r*, is sometimes called
 - intrinsic rate of (natural) increase
- Also, you will also sometimes see the relation $\lambda = e^r$. This is meaningless because r has units. The implicit assumption here is that we measure time in units of τ .