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Functions continued

Defining our own functions
1 Create a new script: ThirdPopModel.r

2 Write the following command lines into the script file:
1 genNum <- 32
2 Ninitial <- 1
3 lambda <- 2
4 popGrowth <- function( popSize, growthParam )

{ newVal <- growthParam * popSize; return(newVal) }
5 N <- numeric(genNum)
6 Time <- 24 * ( 0 : ( genNum - 1 ) )
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- popGrowth( N[index-1], lambda ) }
9 print(N)

10 plot( Time, N, xlab = "Time[hours]" )

3 Save and run the script.
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Functions continued

Defining our own functions
A function declaration has the following structure

<function name> <- function(<list of argument names>)
{

<list of R commands>

...
return(...)

}

Note that this is similar to assignment into variables.

Example: funfun <- function( numarg, textarg )
{ print(textarg); val <- numargˆ2 + numarg;
return(val) }
Test it by typing
print( 1.5 * funfun( 4, "Learning R is fun!" ) )
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Functions continued

Default values of arguments
We can define default values for arguments.

We do it using the = sign within the function declaration.

Example:
funfun <- function( numarg = 5, textarg = "**
Default text **" )
{ print(textarg); val <- numargˆ2 + numarg;
return(val) }

Test it by typing
1 funfun( 4, "Learning R is fun!" )
2 funfun( 4 )
3 funfun()

If we want to change only the second argument
1 funfun( , "R is fun!" )
2 funfun( textarg = "Good morning" )
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Functions continued

Default values of arguments

Or input them in a different order
1 funfun( textarg = "fun fun fun!", numarg = 3)

We can use the explicit names of the arguments, as
defined in the function declaration, when setting values
of arguments during a function call.

In that case, we don’t need to observe the original
order of the arguments.

Example: foo <- function(x, y, z) {...}

The function call foo( z = 3, x = 1, y = 2 )
is identical to the call foo( 1, 2, 3 )
but different than foo( 3, 1, 2 ).

We have already seen this syntax with the plot function.
plot( x, y, xlab = ..., type = ..., ylab = ...)
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Functions continued

Default values of arguments
1 Change ThirdPopModel.r as follows.

1 genNum <- 32
2 Ninitial <- 1
3 lambda <- 3
4 popGrowth <- function(popSize = 1, growthParam = 2)

{ newVal <- growthParam * popSize; return(newVal) }
5 N <- numeric(genNum)
6 Time <- 24 * ( 0 : ( genNum - 1 ) )
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- popGrowth( popSize = N[index-1] ) }
9 print(N)

10 plot( Time, N, xlab = "Time[hours]" )

2 Save and run the script.

3 What is the finite rate of increase of this population?
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Errors, readability and comments
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Errors, readability and comments

Erros, readability and comments
1 Read errors carefully – they guide you to the type and

location of the problem.

2 Choose meaningful names for variables.
plot(time,popSize)

is clearer to read and understand, compared to:
plot(T,N)

3 Similarly, use spaces.
time <- 0:4 ; popSize <- c( 10, 20, 40, 80, 160 )
plot( time, popSize, xlab = "Time[hours]", ylab =
"Population size", type = "b" )

is clearer to read than:
time<-0:4;popSize<-c(10,20,40,80,160)
plot(time,popSize,xlab="Time[hours]",ylab="Population
size",type="b")
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Errors, readability and comments

Erros, readability and comments

1 Similarly, write each command in a new line, separate
different sections of the program with a blank line, and
indent!

2 For example, compare:

PopGrowth <- function( popSize, growthParam )
{ newPopSize <- popSize * growthParam ; return(
newPopSize ) }
genNum <- 10; Ninitial <- 2
N <- numeric(genNum) N[1] <- Ninitial
for ( index in 2:genNum )
{ N[index] = PopGrowth( N, 2 ) }
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Errors, readability and comments

Erros, readability and comments
2 . . . .. with the following

PopGrowth <- function( popSize, growthParam )
{

newPopSize <- popSize * growthParam
return( newPopSize )

}

genNum <- 10
Ninitial <- 2

N <- numeric(genNum)
N[1] <- Ninitial

for ( index in 2:genNum )
{

N[index] = PopGrowth( N, 2 )
}
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Errors, readability and comments

Erros, readability and comments
3 . . . .. and with comments

PopGrowth <- function( popSize, growthParam )
{

# New population size using geometric model.
newPopSize <- popSize * growthParam
return( newPopSize )

}

# Parameters.
genNum <- 10
Ninitial <- 2

# Initialization of variables.
N <- numeric(genNum)
N[1] <- Ninitial

# For-loop to calculate population trajectory.
for ( index in 2:genNum )
{

N[index] = PopGrowth( N, 2 )
}
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Geometric growth model
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Geometric growth model

Geometric model of population growth
Recursion relation/Difference equation of geometric growth

Nt�1 � λ Nt ô ∆N � pλ� 1qNt

λ is called finite rate of increase.

It is the average/mean per-capita multiplication factor
per one time-step.

Average in the sense that some individuals contribute
negative growth (die), some contribute positive growth
(reproduce), some contribute zero growth (survive but
do not reproduce). λ represents a weighted average of
these different contributions.

Classification of geometric growth:
λ ¡ 1 ñ ∆N ¡ 0, population grows.
λ � 1 ñ ∆N � 0, population size unchanged.
0 ¤ λ   1 ñ ∆N   0, population declines.
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Geometric growth model

The net reproductive rate, R0

A second important parameter is the net reproductive
rate, R0, which is the expected lifetime reproductive
output of a female.

Example: for unicellulars, when time between divisions
represents lifetime,

if there is no mortality, R0 � 2.
if there is 25% mortality between divisions,
R0 � 0.25 � 0� 0.75 � 2 � 1.5

if there is 50% mortality between divisions,
R0 � 0.5 � 0� 0.5 � 2 � 1

etc.

If we measure population growth in time-steps of 1
lifetime, λ � R0.

If in time-steps of 2 lifetimes, λ � R2
0.

If in time-steps of 3 lifetimes, λ � R3
0.
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Geometric growth model

The net reproductive rate, R0

Generalizing:
If T is lifetime / generation time,

and τ is the time-step of the model,
The relationship between λ and R0 is

λ � R
pτ{T q
0

So, for example, if we measure population growth in
time-steps of 10 generation times, τ � 10T , then λ � R10

0 .

But what about when τ   T we measure population
growth in time-steps shorter than lifetime / generation
time.

Does this general relation still apply?
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Geometric growth model

Synchronous and asynchronous reproduction

Synchronous reproduction: τ � T .

-

6

Po
p

u
la

tio
n

siz
e

Time

OUTLINE 10/ 19



Geometric growth model

Synchronous and asynchronous reproduction

Synchronous reproduction: τ � T {2.
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Geometric growth model

Synchronous and asynchronous reproduction

Synchronous reproduction: τ � T {4.
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Geometric growth model

Synchronous and asynchronous reproduction

But if we break the synchrony in reproduction.
For example, half the cells reproduce at noon and half at
midnight.
Asynchronous reproduction: τ � T .
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Geometric growth model

Synchronous and asynchronous reproduction

Asynchronous reproduction: τ � T {2.
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Geometric growth model

Synchronous and asynchronous reproduction

Asynchronous reproduction: τ � T {4.
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Geometric growth model

Synchronous and asynchronous reproduction

Even more asynchronous reproduction:
four "subpopulations", based on timing of division.
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Exponential growth model
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Exponential growth model

Exponential model of population growth

In the limit of completely asynchronous reproduction –
reproduction events are continuously distributed over time –
we obtain the exponential growth model.

The population growth trajectory is given by

Nptq � N0e
rt

The population growth rate is given by the differential
equation

dN{dt � rN

r is called instantaneous rate of increase.

r has units of rate or 1/time (i.e., min -1, day -1, year -1,
etc.) – unlike λ and R0, which are pure numbers.
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Exponential growth model

Exponential model of population growth

In the limit of completely asynchronous reproduction –
reproduction events are continuously distributed over time –
we obtain the exponential growth model.

The three parameters are related according to

r �
lnλ

τ
�

lnR0

T

Classification of geometric growth:

r ¡ 0ñ dN{dt ¡ 0, population grows.

r � 0ñ dN{dt � 0, population size unchanged.

r   0ñ dN{dt   0, population declines.
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Summary of unregulated population growth
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Summary of unregulated population growth

The BIDE model
A fundamental ecological fact of life:

Nt�1 � Nt �B � I �D � E

Change in population size is the sum of positive
contributions (birth and immigration) and negative
contributions (death and emigration).

While demonstrating those contributions in a compact
form, this model says very little else.

If B, I, D, E are fixed constants, we get the arithmetic
model Ñ not very useful.

If B, I, D, E depend on population size (as in the
geometric model), the above expression hardly displays
this dependence Ñ again, not very useful.
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Summary of unregulated population growth

Birth, death and migration rates
We can modify the BIDE model:

Nt�1 � Nt � bNt � dNt � eNt � I � p1� b� d� eqNt � I

In this case, b, d, e are the (per-capita) birth, death and
emigration rates.

They are measured with respect to the original
population at time t.

To begin, let us ignore migration, i.e., e � 0, I � 0.

If at time t� 1 (i.e., after a period of duration τ ), all
original individuals (Nt) have died, we have: d � 1,
b � R0, and so λ � 1�R0 � 1 � R0.

If at time t� 1 three generations have passed (original
individuals, daughters and granddaughters are already
dead), we have d � 1, b � R3

0, and so λ � 1�R3
0� 1 � R3

0.
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Summary of unregulated population growth

Birth, death and migration rates

For time-steps shorter than generation time (τ   T ) we
have already seen the difference between pure
geometric growth and explicitly following occurrences
of deaths and births.

For short time-steps, b and d reflect only mean rates.

Or, if death and birth occur asynchronously, randomly,
and independently,

d represents probability to die during a single time-step
(same for all individuals and at all times).

b represents the mean per-capita births that occurred in
the population during that interval (again, same for all
individuals and at all times).
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Summary of unregulated population growth

Birth, death and migration rates

Nt�1 � p1� b� d� eqNt � I

When studying only a single population, emigration
rate, e, has same effect as death rate, d. There is nothing
significantly different in a model with emigration (e and
d can combine into a single "effective death" rate).

A population model with nonzero immigration, I, is no
longer purely geometric, but represents a combination
of geometric and arithmetic growth models.
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Summary of unregulated population growth

Birth, death and migration rates

For the exponential growth model, b and d are "real"
rates, i.e., have units of 1/time.

For a very short time interval τ the total number of births
in the population would be bNτ , and the total number
of deaths would be dNτ .

Or, the probability to die during the interval is dτ , and
the mean number of births per-capita is bτ .

In the exponential model r � b� d.

d enforces a statistical distribution of lifetimes – where
the life expectancy (mean lifetime) is 1{d.

R0 is mean lifetime reproduction, therefore R0 � b{d.
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Summary of unregulated population growth

More detailed geometric and exponential
models
r and λ may themselves be composed of more
fundamental parameters:

Give population age-.structure, R0 and r are actually
derived from age-dependent schedules of survival and
reproduction.
Temperature dependence, nutrient concentration,
pH-dependence etc. For example:
λ � λ0 + c � (Temperature) + k � (Nutrient concentration)
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Summary of unregulated population growth

Comparison between exponential and
geometric models

Time

Parameter

Dynamics

Trajectory

Growing

Stable

Declining

Geometric
discrete, t � 0, 1, 2 . . .

λ [no units]

Nt � λNt

∆N � pλ� 1qNt

Nt � N0λ
t

λ ¡ 1

λ � 1

0 ¤ λ   1

Exponential
continuous

r [1/time]

dN{dt � rN

Nptq � N0e
rt

r ¡ 0

r � 0

r   0
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Summary of unregulated population growth

Which model should I use?
1 The answer most strongly depends on the life-cycle of

the organism.
Geometric model would fit an organism with
synchronous reproduction, or with division of the
life-cycle or annual cycle into distinct reproductive and
non-reproductive phases (e.g., plants, many insects,
landsnails etc.).
Exponential model would fit organisms that reproduce
asynchronously and do not have distinct reproductive
seasons (e.g., humans, tropical animals and plants,
unicellulars in a beaker).

2 But also depends on the research goals and
methodology.
For example, if we want to model human population
size at the end of each decade, a geometric model
may serve better.
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Summary of unregulated population growth

Which model should I use?
3 A related issue is that of overlapping vs. nonoverlapping

generations.
i.e., whether within a population we can find individuals
belonging to different generations (different age- or
year-classes).

Clearly, that depends on the organism: annual plants
and insects have nonoverlapping generations, while
perennial plants and humans have overlapping
generations.
It is sometimes argued that geometric model fits the
former, and exponential the latter.
However, perennial organisms may fit either geometric or
exponential model:
perennial plants fit a geometric model, because they
reproduce only at specific times during the year.
Humans, however, are better described by an
exponential growth model.
It is the synchrony of reproduction (or lack of it) that is
more important in determining the preferred model.
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Summary of unregulated population growth

Too many names

The net reproductive rate, R0, has also been called in
the literature

basic reproductive rate
basic reproductive number/ratio

The finite rate of increase, λ, is sometimes called
net reproductive rate
fundamental net reproductive rate
fundamental per capita rate of increase

The instantaneous rate of increase, r, is sometimes
called

intrinsic rate of (natural) increase

Also, you will also sometimes see the relation λ � er. This
is meaningless because r has units. The implicit
assumption here is that we measure time in units of τ .
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