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Comments on exercise 2

Exercise 2: calculating λ

The "emigrating unicellulars" problem (R0 � 1.6, T � 24hr,
τ � 48hr, it takes 5sec to refresh the medium):

Nt
R2

0 r48hrs
ÝÝÝÝÝÝÝÑ N 1

t
1�e r5secs
ÝÝÝÝÝÝÝÑ Nt�1

R2
0ÝÝÝÑ N 1

t�1
1�e
ÝÝÝÝÑ Nt�2 . . .

If we measure right after emigration, we measure
Nt, Nt�1, Nt�2, . . .

It is the granddaughters that emigrate.

So if we begin with N0 � 100, we get N1 � 192,
N2 � 368.64 etc.

If we measure right before emigration, we measure
N 1

t , N
1
t�1, N

1
t�2, . . .

It is the parents that emigrate.

So if we begin with N0 � 100, we get N 1
0 � 256,

N 1
1 � 491.52, N 1

2 � 943.72 etc.
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Comments on exercise 2

Exercise 2: calculating λ

The "emigrating unicellulars" problem (R0 � 1.6, T � 24hr,
τ � 48hr, it takes 5sec to refresh the medium):

Nt
R2

0 r48hrs
ÝÝÝÝÝÝÝÑ N 1

t
1�e r5secs
ÝÝÝÝÝÝÝÑ Nt�1

R2
0ÝÝÝÑ N 1

t�1
1�e
ÝÝÝÝÑ Nt�2 . . .

If we measure right after emigration, we measure
Nt, Nt�1, Nt�2, . . .

If we measure right before emigration, we measure
N 1

t , N
1
t�1, N

1
t�2, . . .

Although the measured population sizes/densities are
different.

The ratio of successive values remains the same,
whether we measure the Nt or the N 1

t .

I.e., λ � R2
0p1� eq (in this case 1.92), regardless of timing

of measurement.
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Comments on exercise 2

Exercise 2: calculating λ
Another example – annual life cycle of a grasshopper:

0.510

0.5

With no emigration, λ � R0 � 0.5 � 0.5 � 10 � 2.5.
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Comments on exercise 2

Exercise 2: calculating λ
Another example – annual life cycle of a grasshopper:

0.510

0.5

Starting with 100 eggs,
1 Egg number will increase to 250, then to 625, etc.
2 Initially 50 nymphs, then 125, then 312.5 etc.
3 Initially 25 adults, then 62.5, then 156.25 etc.

Population numbers will change, depending on what
we are measuring (eggs, nymphs, adults).
But λ is the same in all cases.
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Comments on exercise 2

Exercise 2: calculating λ
Another example – annual life cycle of a grasshopper:

0.510

0.5

-e

With nymph emigration,
λ � 0.5 � p1� eq � 0.5 � 10 � R0p1� eq � 2.5p1� eq.
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Comments on exercise 2

Exercise 2: calculating λ
Another example – annual life cycle of a grasshopper:

0.510

0.5

PPPPqe
With nymph emigration,
λ � 0.5 � p1� eq � 0.5 � 10 � R0p1� eq � 2.5p1� eq.
With adult emigration,
λ � 0.5 � 0.5 � p1� eq � 10 � R0p1� eq � 2.5p1� eq.
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Comments on exercise 2

Exercise 2: calculating λ
Another example – annual life cycle of a grasshopper:

0.510

0.5

-e

PPPPqe
As long as effects are multiplicative, the order does not
matter.
The exact timing of emigration will affect observed
numbers of nymphs or adults.
But will not affect λ, as long as e is the same in both
cases.
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Density-Dependence

J-curves and S-curves
Typically, unregulated populations have growth curves that
are exponential (shaped like the letter J).

Typically, regulated populations have growth curves that are
sigmoidal (shaped like the letter S).
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Density-Dependence

J-curves and S-curves

Exponential or geometric growth cannot produce
sigmoidal curves.

We are obviously missing something – some mechanism
that causes population growth to slow down.

Time to modify our models.
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Density-Dependence

Density-dependent birth and death rates
Density-dependent mortality in flour beetle (Tribolium).
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Density-Dependence

Density-dependent birth and death rates
Density-dependent seed production in an annual plant.
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Density-Dependence

Density-dependent birth and death rates
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Density-Dependence

Density-dependent birth and death rates

Net recruitment (total births minus total deaths) is usually
humped-shaped.

Having maximum at intermediate densities ÝÑ
population growth is maximal at intermediate densities.

ÝÑ resulting in S-shaped growth curve.
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Density-Dependence

The carrying capacity, K
The carrying capacity, K, is the long-term stable
population size – i.e., where births and deaths cancel
each other.
If starting below, population size will increase towards K.
If starting above, population size will decrease towards
K.
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l Maximum population growth
Maximum net recruitment
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Density-Dependence

Population growth vs. Relative/Per-capita growth

Population growth rate (PGR) is the rate or increment of

change in population size/density.

dN

dt
,

dn

dt
, ∆N, ∆n

Relative/per-capita growth rate (RGR) is the mean

per-capita contribution of an individual to population

growth.

1

N

dN

dt
,

1

n

dn

dt
,

∆N

N
,

∆n

n

Unregulated (exponential or geometric) population
growth and regulated (density-dependent) growth
show different patterns of change in PGR and RGR as
density increases.
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Density-Dependence

Population growth vs. Relative/Per-capita growth
Unregulated Regulated
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Density-Dependence

Density-independent vs. Density-dependent
regulating factors

Some regulating factors are density-independent:
seasonal frosts or droughts, fires, storms or other
catastrophes.

Other mortality factors are density-dependent:
increased starvation risk, increased risk of injury or death
through competitive interactions, risk of disease or
predation, etc.

We can write total death rate as sum of
density-independent terms and density-dependent
terms.

For example, d � d0 � d1N (d0 and d1 are constants.)

Of course, density-dependence does not have to be
linear (other functional forms are possible).
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Density-Dependence

Density-independent vs. Density-dependent
regulating factors

Similarly, fecundity / birth rate can be written as
b � b0 � b1N . (Typically, b1 is negative, as we expect
per-capita fecundity to decrease as density rises).

Density-dependent population regulation is the result of
biotic interactions:

Intraspecific competition – more conspecifics, less
resources per-capita.

Interspecific competition – more competitors (from any
species), less resources per-capita.

Predation – more predators, higher mortality.

Outbreaks of disease – a kind of predation.
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Density-Dependence

Density-independent vs. Density-dependent
regulating factors

Sometimes (at least for some range of densities)
density-dependence can be positive – i.e., RGR would
increase with rising density.

This is called Allee effect.

For example, wind-pollinated plants suffer reduced
fecundity at very low densities, because many flowers
remain unpollinated due to limited pollen availability.
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6
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N
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Intraspecific Competition

Intraspecific competition

Individuals of the same species have similar needs and
behavior in terms of resources, habitat, timing of
lifecycle events etc.

Therefore, individuals should suffer strong competition
from conspecifics, under conditions of crowding.

These competition effects eventually manifest
themselves as reduced fecundity and survival rates.
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Intraspecific Competition

Intraspecific competition
Types of intraspecific competition

1 Scramble vs. Contest
In scramble competition all individuals suffer more or less
the same reduction in fecundity or same increase in
mortality.
In contest competition there are "winners" and "losers" –
all or nothing.
"Winners" do not suffer reduction in survival or fecundity.
"Losers" suffer maximum reduction.
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Intraspecific Competition

Intraspecific competition
Schematic representation of scramble and contest
competition.

Contest Scramble

-

6

Nt�1

Nt -

6

Nt�1

Nt

Example of contest: A fixed number of territories that
individuals compete for.
Example of scramble: Food divided equally, but there is a
minimum requirement to survive and reproduce successfully.
If not enough food per individual, all starve to death.
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Intraspecific Competition

Intraspecific competition
Types of intraspecific competition

1 Scramble vs. Contest
In scramble competition all individuals suffer more or less
the same reduction in fecundity or same increase in
mortality.
In contest competition there are "winners" and "losers" –
all or nothing.
"Winners" do not suffer reduction in survival or fecundity.
"Losers" suffer maximum reduction.

2 Interference vs. Exploitation
In Interference competition there is direct interaction
(aggression) among individuals, where one individual
prevents or reduces access to resources from the other.
In exploitation competition there are no direct
interactions – individuals affect each other by depleting
a common resource.

Of course these are just extremes of a spectrum of types of
intraspecific competition.
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Logistic Growth

Logistic growth
Simplest form of density-dependence is linear.

Always start with a simple model – otherwise it is difficult
to draw conclusions.

Recruitment is a quadratic function – i.e., a parabola.

Maximum recruitment (maximum PGR) occurs at K{2.

-

6

PGR

N -

6

RGR

N
K
2

l
K

l
K

lrmax

OUTLINE 13/ 15



Logistic Growth

Logistic growth
Continuous time model is given by

dN

dt
� rmaxN

�
1�

N

K




I.e., the expression for exponential growth, multiplied by
a competition factor that is increasingly smaller than 1,
as population size/density increases.
RGR or per-capita growth rate is not constant, but given
by the linear density-dependence relation

rpNq � rmax

�
1�

N

K




An analogous discrete time model is given by

λpNtq � 1� rmax

�
1�

Nt

K
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Logistic Growth

Logistic growth
The logistic growth curve (continuous time):

Nptq �
N0K

N0 � pK �N0qe�rmaxt
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Logistic Growth

Stationarity and stability
Stationary points represent special values of the
variable that do not change over time.
I.e., if we start at a stationary point, we remain on it on
subsequent times.
Therefore, stationary points are defined zero rate of
change: ∆N � 0 or dN{dt � 0.
E.g., for the logistic growth model we have two
stationary points, N � 0 and N � K:

- N0
l

K
l

K{2

-

---

1.25K

�

� �

For exponential growth, only N � 0:

- N0
l -�-� -�
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Logistic Growth

Stationarity and stability
A stationary point can be either stable or unstable.

Any deviation from a stable stationary point would tend
to decrease over time – i.e., a restoring "force"
operating towards the point.

Any deviation from an unstable stationary point would
tend to increase over time – i.e., a repelling "force"
away from the point.

We can determine stability graphically.

E.g., for the logistic model N � 0 is unstable, and N � K
is stable:

- N0
l

K
l

K{2

- ---

1.25K

�� �

- N0
l
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Logistic Growth

Stationarity and stability
For the exponential model, N � 0 is unstable, if r ¡ 0:

- N0
l - - -

And stable, if r   0:

- N0
l � � �

Ultimately, checking for stability requires mathematical
analysis using methods of linear algebra and nonlinear
dynamics.

But the graphical method is sufficient for our purposes.

We will return to this subject when we talk about
interspecific competition.
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Logistic Growth

Application to sustainable harvesting
If we harvest a logistically growing population at a
constant rate (i.e., individuals or kilos per unit time) – the
stationary population size will decrease.
For example, commercial fishing depletes natural fish
populations.
Denoting harvest rate by H, the dynamics is given by

dN

dt
� rmaxN
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Logistic Growth

Application to sustainable harvesting
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Logistic Growth
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Logistic Growth

Application to sustainable harvesting
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Logistic Growth

Application to sustainable harvesting

Overharvesting (e.g., overfishing) occurs when H
exceeds the maximal possible net recruitment rate
(PGR).

The natural population collapses, resulting in loss of the
natural resource.

For example,

Fisheries collapse – resulting not only in damage to
nature, but also economic collapse of industries and
human communities.

Overgrazed grasslands/pastures (grazed by livestock)
turn into deserts – again resulting in subsequent collapse
of human societies.

Overhunted animals go extinct.
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Logistic Growth

Application to sustainable harvesting

Following collapse of the resource, harvesting must be
stopped for a long period, to allow the natural
population to recover and exceed the maximum PGR
point (in logistic growth, to exceed K{2).

Sustainable harvesting can then be achieved if H is
lower than the maximal PGR.
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