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Intraspecific Competition

Population growth vs. Relative/Per-capita growth

Population growth rate (PGR) is the rate or increment of

change in population size/density.
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Relative/per-capita growth rate (RGR) is the mean

per-capita contribution of an individual to population

growth.
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Unregulated (exponential or geometric) population
growth and regulated (density-dependent) growth
show different patterns of change in PGR and RGR as
density increases.
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Intraspecific Competition

Population growth vs. Relative/Per-capita growth
Unregulated Regulated
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Intraspecific Competition

Density-independent vs. Density-dependent
regulating factors

Some regulating factors are density-independent:
seasonal frosts or droughts, fires, storms or other
catastrophes.

Other mortality factors are density-dependent:
increased starvation risk, increased risk of injury or death
through competitive interactions, risk of disease or
predation, etc.

We can write total death rate as sum of
density-independent terms and density-dependent
terms.

For example, d � d0 � d1N (d0 and d1 are constants.)

Of course, density-dependence does not have to be
linear (other functional forms are possible).
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Intraspecific Competition

Density-independent vs. Density-dependent
regulating factors

Similarly, fecundity / birth rate can be written as
b � b0 � b1N . (Typically, b1 is negative, as we expect
per-capita fecundity to decrease as density rises).

Density-dependent population regulation is the result of
biotic interactions:

Intraspecific competition – more conspecifics, less
resources per-capita.

Interspecific competition – more competitors (from any
species), less resources per-capita.

Predation – more predators, higher mortality.

Outbreaks of disease – a kind of predation.
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Intraspecific Competition

Intraspecific competition

Individuals of the same species have similar needs and
behavior in terms of resources, habitat, timing of
lifecycle events etc.

Therefore, individuals should suffer strong competition
from conspecifics, under conditions of crowding.

These competition effects eventually manifest
themselves as reduced fecundity and survival rates.
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Intraspecific Competition

Intraspecific competition
Types of intraspecific competition

1 Scramble vs. Contest
In scramble competition all individuals suffer more or less
the same reduction in fecundity or same increase in
mortality.
In contest competition there are "winners" and "losers" –
all or nothing.
"Winners" do not suffer reduction in survival or fecundity.
"Losers" suffer maximum reduction.
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Intraspecific Competition

Intraspecific competition
Schematic representation of scramble and contest
competition.

Contest Scramble
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Example of contest: A fixed number of territories that
individuals compete for.
Example of scramble: Food divided equally, but there is a
minimum requirement to survive and reproduce successfully.
If not enough food per individual, all starve to death.
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Intraspecific Competition

Intraspecific competition
Types of intraspecific competition

1 Scramble vs. Contest
In scramble competition all individuals suffer more or less
the same reduction in fecundity or same increase in
mortality.
In contest competition there are "winners" and "losers" –
all or nothing.
"Winners" do not suffer reduction in survival or fecundity.
"Losers" suffer maximum reduction.

2 Interference vs. Exploitation
In Interference competition there is direct interaction
(aggression) among individuals, where one individual
prevents or reduces access to resources from the other.
In exploitation competition there are no direct
interactions – individuals affect each other by depleting
a common resource.

Of course these are just extremes of a spectrum of types of
intraspecific competition.
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Intraspecific Competition

Level of compensation in density-dependence

Density-independent growth: linear recursion relation

Nt�1 � λNt or
Nt�1

Nt
� λ � const.

Recursion relation Finite rate of increase
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Intraspecific Competition

Level of compensation in density-dependence

The long-term equilibrium population size can be obtained
by intersection of the Nt�1 curve with the unity line: Nt�1 � Nt

(i.e., when finite rate of increase, Nt�1

Nt
, is equal to 1).

Recursion relation Finite rate of increase
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Intraspecific Competition

Level of compensation in density-dependence

For density-independent growth there is no such intersection,
and therefore, no equilibrium population size.

Recursion relation Finite rate of increase
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Intraspecific Competition

Level of compensation in density-dependence

Undercompensating density-dependence:
slope of recursion relation decreases over time, but it never
reaches an asymptote.

Recursion relation Finite rate of increase
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Intraspecific Competition

Level of compensation in density-dependence

Exactly compensating density-dependence:
For high enough density (Nt), Nt�1 � const, independent
of initial densityNt.

Recursion relation Finite rate of increase
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Intraspecific Competition

Level of compensation in density-dependence

Overcompensating density-dependence:
Nt�1 decreases with increasing density (Nt), ifNt is high.
This type of density-dependence can potentially cause pop-
ulation collapse (a drop from very highNt to very lowNt�1)
and fluctuations in population size.

Recursion relation Finite rate of increase
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Intraspecific Competition

Level of compensation in density-dependence

Overcompensating density-dependence:
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Intraspecific Competition

Intraspecific competition
Schematic representation of scramble and contest
competition.

Contest Scramble
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Example of contest: A fixed number of territories that
individuals compete for.
Example of scramble: Food divided equally, but there is a
minimum requirement to survive and reproduce successfully.
If not enough food per individual, all starve to death.
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Logistic Growth
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Logistic Growth

Logistic growth
Simplest form of density-dependence is linear.

Always start with a simple model – otherwise it is difficult
to draw conclusions.

Recruitment is a quadratic function – i.e., a parabola.

Maximum recruitment (maximum PGR) occurs at K{2.
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Logistic Growth

Logistic growth
Continuous time model is given by

dN

dt
� rmaxN
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I.e., the expression for exponential growth, multiplied by
a competition factor that is increasingly smaller than 1,
as population size/density increases.
RGR or per-capita growth rate is not constant, but given
by the linear density-dependence relation

rpNq � rmax
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An analogous discrete time model is given by

λpNtq � 1� rmax
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Logistic Growth

Logistic growth
The logistic growth curve (continuous time):

Nptq �
N0K

N0 � pK �N0qe�rmaxt
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Logistic Growth

Stationarity and stability
Stationary points represent special values of the
variable that do not change over time.
I.e., if we start at a stationary point, we remain on it on
subsequent times.
Therefore, stationary points are defined zero rate of
change: ∆N � 0 or dN{dt � 0.
E.g., for the logistic growth model we have two
stationary points, N � 0 and N � K:
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For exponential growth, only N � 0:
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Logistic Growth

Stationarity and stability
A stationary point can be either stable or unstable.

Any deviation from a stable stationary point would tend
to decrease over time – i.e., a restoring "force"
operating towards the point.

Any deviation from an unstable stationary point would
tend to increase over time – i.e., a repelling "force"
away from the point.

We can determine stability graphically.

E.g., for the logistic model N � 0 is unstable, and N � K
is stable:
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Logistic Growth

Stationarity and stability
For the exponential model, N � 0 is unstable, if r ¡ 0:

- N0
l - - -

And stable, if r   0:

- N0
l � � �

Ultimately, checking for stability requires mathematical
analysis using methods from calculus, linear algebra
and nonlinear dynamics.

But the graphical method is sufficient for our purposes.

We will return to this subject when we talk about
interspecific competition.
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Logistic Growth

Application to sustainable harvesting
If we harvest a logistically growing population at a
constant rate (i.e., individuals or kilos per unit time) – the
stationary population size will decrease.
For example, commercial fishing depletes natural fish
populations.
Denoting harvest rate by H, the dynamics is given by

dN

dt
� rmaxN

�
1�

N

K



�H

-

6

PGR

Nl
K

H
l

J
JJ]

H
l

@
@@I

H
l

HHY

H
�

���

�
��	

�
��	





�

l

OUTLINE 11/ 13



Logistic Growth

Application to sustainable harvesting
If we harvest a logistically growing population at a
constant rate (i.e., individuals or kilos per unit time) – the
stationary population size will decrease.
For example, commercial fishing depletes natural fish
populations.
Denoting harvest rate by H, the dynamics is given by

dN

dt
� rmaxN

�
1�

N

K



�H

-

6

PGR

Nl
K

H

l

J
JJ]

H
l

@
@@I

H
l

HHY

H
�

���

�
��	

�
��	





�

l

OUTLINE 11/ 13



Logistic Growth
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Logistic Growth
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Logistic Growth

Application to sustainable harvesting

Overharvesting (e.g., overfishing) occurs when H
exceeds the maximal possible net recruitment rate
(PGR).

The natural population collapses, resulting in loss of the
natural resource.

For example,

Fisheries collapse – resulting not only in damage to
nature, but also economic collapse of industries and
human communities.

Overgrazed grasslands/pastures (grazed by livestock)
turn into deserts – again resulting in subsequent collapse
of human societies.

Overhunted animals go extinct.
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Logistic Growth

Application to sustainable harvesting

Following collapse of the resource, harvesting must be
stopped for a long period, to allow the natural
population to recover and exceed the maximum PGR
point (in logistic growth, to exceed K{2).

Sustainable harvesting can then be achieved if H is
lower than the maximal PGR.
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A discrete-time model of population regulation
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A discrete-time model of population regulation

An R program for regulated populations
This program is similar to the one we wrote for unregulated
growth:

1 GeometricGrowth <- function( popSize, lambda )
{ return( lambda * popSize) }

2 genNum <- 32; Ninitial <- 1
3 increaseRate <- 1.6;
4 PopGrowthFunc <- GeometricGrowth
5 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
6 N[1] <- Ninitial
7 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate ) }

8 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
Note that we use a general parameter, PopGrowthFunc, to
represent the population growth function. We assign to it
the function for geometric growth.

1 GeometricGrowth <- function( popSize, lambda )
{ return( lambda * popSize) }

2 genNum <- 32; Ninitial <- 1
3 increaseRate <- 1.6;
4 PopGrowthFunc <- GeometricGrowth
5 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
6 N[1] <- Ninitial
7 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate ) }

8 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
You can assign a function to an R-variable, just like assigning
a value to a variable. The case here is similar to: x <- 3;
y <- x. Eventually, both x and y hold the value 3.

1 GeometricGrowth <- function( popSize, lambda )
{ return( lambda * popSize) }

2 genNum <- 32; Ninitial <- 1
3 increaseRate <- 1.6;
4 PopGrowthFunc <- GeometricGrowth
5 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
6 N[1] <- Ninitial
7 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate ) }

8 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
Similarly, you assign a function to GeometricGrowth and the
assign the contents of GeometricGrowth (i.e., the function) to
PopGrowthFunc.

1 GeometricGrowth <- function( popSize, lambda )
{ return( lambda * popSize) }

2 genNum <- 32; Ninitial <- 1
3 increaseRate <- 1.6;
4 PopGrowthFunc <- GeometricGrowth
5 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
6 N[1] <- Ninitial
7 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate ) }

8 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
How should we modify this program to include
density-dependence?

1 GeometricGrowth <- function( popSize, lambda )
{ return( lambda * popSize) }

2 genNum <- 32; Ninitial <- 1
3 increaseRate <- 1.6;
4 PopGrowthFunc <- GeometricGrowth
5 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
6 N[1] <- Ninitial
7 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate ) }

8 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
Firstly, we add the logistic growth function

1 GeometricGrowth <- function( popSize, lambda )
{ return( lambda * popSize) }

2 LogisticGrowth <- function( popSize, rmax, K )
{ return( popSize + rmax*popSize*(1-popSize/K) ) }

3 genNum <- 32; Ninitial <- 1
4 increaseRate <- 1.6;
5 PopGrowthFunc <- GeometricGrowth
6 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate ) }

9 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
Secondly, we add parameters for logistic growth

1 GeometricGrowth <- function( popSize, lambda )
{ return( lambda * popSize) }

2 LogisticGrowth <- function( popSize, rmax, K )
{ return( popSize + rmax*popSize*(1-popSize/K) ) }

3 genNum <- 32; Ninitial <- 1
4 increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
5 PopGrowthFunc <- GeometricGrowth
6 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate ) }

9 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
Next, we change PopGrowthFunc to use logistic instead of
geometric

1 GeometricGrowth <- function( popSize, lambda )
{ return( lambda * popSize) }

2 LogisticGrowth <- function( popSize, rmax, K )
{ return( popSize + rmax*popSize*(1-popSize/K) ) }

3 genNum <- 32; Ninitial <- 1
4 increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
5 PopGrowthFunc <- LogisticGrowth
6 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate ) }

9 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
Finally, we add arguments to the function call in the for-loop

1 GeometricGrowth <- function( popSize, lambda )
{ return( lambda * popSize) }

2 LogisticGrowth <- function( popSize, rmax, K )
{ return( popSize + rmax*popSize*(1-popSize/K) ) }

3 genNum <- 32; Ninitial <- 1
4 increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
5 PopGrowthFunc <- LogisticGrowth
6 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate, rmax = maxRGR, K = capacity )
}

9 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
But there is a problem. Logistic growth function does not
have an argument named lambda

1 GeometricGrowth <- function( popSize, lambda )
{ return( lambda * popSize) }

2 LogisticGrowth <- function( popSize, rmax, K )
{ return( popSize + rmax*popSize*(1-popSize/K) ) }

3 genNum <- 32; Ninitial <- 1
4 increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
5 PopGrowthFunc <- LogisticGrowth
6 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate, rmax = maxRGR, K = capacity )
}

9 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
We solve that by adding the . . . argument to both functions

1 GeometricGrowth <- function( popSize, lambda, ... )
{ return( lambda * popSize) }

2 LogisticGrowth <- function( popSize, rmax, K, ... )
{ return( popSize + rmax*popSize*(1-popSize/K) ) }

3 genNum <- 32; Ninitial <- 1
4 increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
5 PopGrowthFunc <- LogisticGrowth
6 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate, rmax = maxRGR, K = capacity )
}

9 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
The . . . argument allows additional arguments, unspecified
in the function declaration, to be passed to the function

1 GeometricGrowth <- function( popSize, lambda, ... )
{ return( lambda * popSize) }

2 LogisticGrowth <- function( popSize, rmax, K, ... )
{ return( popSize + rmax*popSize*(1-popSize/K) ) }

3 genNum <- 32; Ninitial <- 1
4 increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
5 PopGrowthFunc <- LogisticGrowth
6 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate, rmax = maxRGR, K = capacity )
}

9 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
We can now switch between geometric and logistic growth,
just by changing the parameter PopGrowthFunc

1 GeometricGrowth <- function( popSize, lambda, ... )
{ return( lambda * popSize) }

2 LogisticGrowth <- function( popSize, rmax, K, ... )
{ return( popSize + rmax*popSize*(1-popSize/K) ) }

3 genNum <- 32; Ninitial <- 1
4 increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
5 PopGrowthFunc <- LogisticGrowth
6 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate, rmax = maxRGR, K = capacity )
}

9 plot( Time, N, xlab = "Time[hours]" )
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A discrete-time model of population regulation

An R program for regulated populations
Save and run the program for different cases (geometric vs.
logistic, different parameter settings, etc. )

1 GeometricGrowth <- function( popSize, lambda, ... )
{ return( lambda * popSize) }

2 LogisticGrowth <- function( popSize, rmax, K, ... )
{ return( popSize + rmax*popSize*(1-popSize/K) ) }

3 genNum <- 32; Ninitial <- 1
4 increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
5 PopGrowthFunc <- LogisticGrowth
6 N <- numeric(genNum); Time <- seq(from = 0, by = 24,

length = genNum)
7 N[1] <- Ninitial
8 for ( index in 2:genNum )

{ N[index] <- PopGrowthFunc( popSize = N[index-1],
lambda = increaseRate, rmax = maxRGR, K = capacity )
}

9 plot( Time, N, xlab = "Time[hours]" )
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