Lecture 9 Intraspecific Competition and Logistic Growth

> Dr. Ido Filin ifilin@univ.haifa.ac.il

> > 17 December 2012

Population growth vs. Relative/Per-capita growth

• Population growth rate (PGR) is the rate or increment of

change in population size/density.

$$
\frac{dN}{dt}, \quad \frac{dn}{dt}, \quad \Delta N, \quad \Delta n
$$

• Relative/per-capita growth rate (RGR) is the mean per-capita contribution of an individual to population growth.

$$
\frac{1}{N}\frac{dN}{dt}, \quad \frac{1}{n}\frac{dn}{dt}, \quad \frac{\Delta N}{N}, \quad \frac{\Delta n}{n}
$$

Unregulated (exponential or geometric) population growth and regulated (density-dependent) growth show different patterns of change in PGR and RGR as density increases.

Population growth vs. Relative/Per-capita growth

Density-independent vs. Density-dependent regulating factors

- Some regulating factors are density-independent: seasonal frosts or droughts, fires, storms or other catastrophes.
- Other mortality factors are density-dependent: increased starvation risk, increased risk of injury or death through competitive interactions, risk of disease or predation, etc.
- We can write total death rate as sum of density-independent terms and density-dependent terms.
- For example, $d = d_0 + d_1N$ (d_0 and d_1 are constants.)
- Of course, density-dependence does not have to be linear (other functional forms are possible).

Density-independent vs. Density-dependent regulating factors

- Similarly, fecundity / birth rate can be written as $b = b₀ + b₁N$. (Typically, $b₁$ is negative, as we expect per-capita fecundity to decrease as density rises).
- Density-dependent population regulation is the result of biotic interactions:
	- Intraspecific competition more conspecifics, less resources per-capita.
	- Interspecific competition more competitors (from any species), less resources per-capita.
	- Predation more predators, higher mortality.
	- Outbreaks of disease a kind of predation.

• Individuals of the same species have similar needs and behavior in terms of resources, habitat, timing of lifecycle events etc.

• Therefore, individuals should suffer strong competition from conspecifics, under conditions of crowding.

• These competition effects eventually manifest themselves as reduced fecundity and survival rates.

Types of intraspecific competition

1 Scramble vs. Contest

- In scramble competition all individuals suffer more or less the same reduction in fecundity or same increase in mortality.
- In contest competition there are "winners" and "losers" all or nothing.

"Winners" do not suffer reduction in survival or fecundity. "Losers" suffer maximum reduction.

Schematic representation of scramble and contest competition.

Example of contest: A fixed number of territories that individuals compete for.

Example of scramble: Food divided equally, but there is a minimum requirement to survive and reproduce successfully. If not enough food per individual, all starve to death.

Types of intraspecific competition

1 Scramble vs. Contest

- In scramble competition all individuals suffer more or less the same reduction in fecundity or same increase in mortality.
- In contest competition there are "winners" and "losers" all or nothing.

"Winners" do not suffer reduction in survival or fecundity. "Losers" suffer maximum reduction.

2 Interference vs. Exploitation

- In Interference competition there is direct interaction (aggression) among individuals, where one individual prevents or reduces access to resources from the other.
- • In exploitation competition there are no direct interactions – individuals affect each other by depleting a common resource.

Of course these are just extremes of a spectrum of types of intraspecific competition. [OUTLINE](#page-1-0) 5/ 13

Level of compensation in density-dependence

Density-independent growth: linear recursion relation
assembly a state of the state of **Density-independe**
 $N_{t+1} = \lambda N_t$ or N_{t+1} **pwth**: linear recursic $\frac{N_{t+1}}{N_t} = \lambda = const.$

Level of compensation in density-dependence

The long-term equilibrium population size can be obtained by intersection of the N_{t+1} curve with the unity line: $N_{t+1} = N_t$ (i.e., when finite rate of increase, $\frac{N_{t+1}}{N_t}$, is equal to 1).

Level of compensation in density-dependence

For density-independent growth there is no such intersection, and therefore, no equilibrium population size.

Level of compensation in density-dependence

Undercompensating density-dependence:

slope of recursion relation decreases over time, but it never reaches an asymptote.

Level of compensation in density-dependence

Exactly compensating density-dependence: **Exactly compensating** density-dependence:
For high enough density (N_t), $N_{t+1} = const$, independent of initial density $N_t.$

Level of compensation in density-dependence

Overcompensating density-dependence:

 N_{t+1} decreases with increasing density (N_{t}), if N_{t} is high. This type of density-dependence can potentially cause population collapse (a drop from very high N_t to very low N_{t+1}) and fluctuations in population size.

Level of compensation in density-dependence

Overcompensating density-dependence:

 N_{t+1} decreases with increasing density (N_{t}), if N_{t} is high. This type of density-dependence can potentially cause population collapse (a drop from very high N_t to very low N_{t+1}) and fluctuations in population size.

Schematic representation of scramble and contest competition.

Example of contest: A fixed number of territories that individuals compete for.

Example of scramble: Food divided equally, but there is a minimum requirement to survive and reproduce successfully. If not enough food per individual, all starve to death.

Outline

3 [A discrete-time model of population regulation](#page-33-0)

[Logistic Growth](#page-19-0)

Logistic growth

- Simplest form of density-dependence is linear.
- Always start with a simple model otherwise it is difficult to draw conclusions.
- Recruitment is a quadratic function i.e., a parabola.
- Maximum recruitment (maximum PGR) occurs at $K/2$.

[Logistic Growth](#page-20-0)

Logistic growth

• Continuous time model is given by

$$
\frac{dN}{dt} = r_{max} N\left(1 - \frac{N}{K}\right)
$$

- I.e., the expression for exponential growth, multiplied by a competition factor that is increasingly smaller than 1, as population size/density increases.
- RGR or per-capita growth rate is not constant, but given by the linear density-dependence relation

$$
r(N) = r_{max} \left(1 - \frac{N}{K} \right)
$$

• An analogous discrete time model is given by

$$
\lambda(N_t) = 1 + r_{max} \left(1 - \frac{N_t}{K} \right)
$$

Logistic growth

The logistic growth curve (continuous time):

$$
N(t) = \frac{N_0 K}{N_0 + (K - N_0)e^{-r_{max}t}}
$$

[Logistic Growth](#page-22-0) Stationarity and stability

- **Stationary points** represent special values of the variable that do not change over time.
- I.e., if we start at a stationary point, we remain on it on subsequent times.
- **•** Therefore, stationary points are defined zero rate of change: $\Delta N = 0$ or $dN/dt = 0$.
- E.g., for the logistic growth model we have two stationary points, $N = 0$ and $N = K$:

[Logistic Growth](#page-23-0) Stationarity and stability

- A stationary point can be either stable or unstable.
- Any deviation from a stable stationary point would tend to decrease over time – i.e., a restoring "force" operating towards the point.
- Any deviation from an unstable stationary point would tend to increase over time – i.e., a repelling "force" away from the point.
- We can determine stability graphically.
- E.g., for the logistic model $N = 0$ is unstable, and $N = K$ is stable:

[Logistic Growth](#page-24-0) Stationarity and stability

• For the exponential model, $N = 0$ is unstable, if $r > 0$:

- Ultimately, checking for stability requires mathematical analysis using methods from calculus, linear algebra and nonlinear dynamics.
- But the graphical method is sufficient for our purposes.
- We will return to this subject when we talk about interspecific competition.

- If we harvest a logistically growing population at a constant rate (i.e., individuals or kilos per unit time) – the stationary population size will decrease.
- **•** For example, commercial fishing depletes natural fish populations.
- \bullet Denoting harvest rate by H , the dynamics is given by

$$
\frac{dN}{dt} = r_{max} N \left(1 - \frac{N}{K} \right) - H
$$

- If we harvest a logistically growing population at a constant rate (i.e., individuals or kilos per unit time) – the stationary population size will decrease.
- **•** For example, commercial fishing depletes natural fish populations.
- \bullet Denoting harvest rate by H , the dynamics is given by

$$
\frac{dN}{dt} = r_{max} N \left(1 - \frac{N}{K} \right) - H
$$

- If we harvest a logistically growing population at a constant rate (i.e., individuals or kilos per unit time) – the stationary population size will decrease.
- **•** For example, commercial fishing depletes natural fish populations.
- \bullet Denoting harvest rate by H , the dynamics is given by

$$
\frac{dN}{dt} = r_{max} N \left(1 - \frac{N}{K} \right) - H
$$

- If we harvest a logistically growing population at a constant rate (i.e., individuals or kilos per unit time) – the stationary population size will decrease.
- **•** For example, commercial fishing depletes natural fish populations.
- \bullet Denoting harvest rate by H , the dynamics is given by

$$
\frac{dN}{dt} = r_{max} N \left(1 - \frac{N}{K} \right) - H
$$

- If we harvest a logistically growing population at a constant rate (i.e., individuals or kilos per unit time) – the stationary population size will decrease.
- **•** For example, commercial fishing depletes natural fish populations.
- \bullet Denoting harvest rate by H , the dynamics is given by

- **•** If we harvest a logistically growing population at a constant rate (i.e., individuals or kilos per unit time) – the stationary population size will decrease.
- **•** For example, commercial fishing depletes natural fish populations.
- \bullet Denoting harvest rate by H , the dynamics is given by

- \bullet Overharvesting (e.g., overfishing) occurs when H exceeds the maximal possible net recruitment rate (PGR).
- The natural population collapses, resulting in loss of the natural resource.
- • For example,
	- Fisheries collapse resulting not only in damage to nature, but also economic collapse of industries and human communities.
	- Overgrazed grasslands/pastures (grazed by livestock) turn into deserts – again resulting in subsequent collapse of human societies.
	- Overhunted animals go extinct.

- **•** Following collapse of the resource, harvesting must be stopped for a long period, to allow the natural population to recover and exceed the maximum PGR point (in logistic growth, to exceed $K/2$).
- \bullet Sustainable harvesting can then be achieved if H is lower than the maximal PGR.

2 [Logistic Growth](#page-18-0)

Outline

3 [A discrete-time model of population regulation](#page-33-0)

An R program for regulated populations

This program is similar to the one we wrote for unregulated growth:

- ¹ GeometricGrowth <- function(popSize, lambda) { return(lambda * popSize) }
- ² genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6;
- 4 PopGrowthFunc <- GeometricGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- \bullet N[1] \leq Ninitial
- **O** for (index in 2:genNum) { N[index] <- PopGrowthFunc(popSize = N[index-1], lambda = increaseRate) }
- \bullet plot(Time, N, xlab = "Time[hours]")

[A discrete-time model of population regulation](#page-35-0) An R program for regulated populations

Note that we use a general parameter, PopGrowthFunc, to represent the population growth function. We assign to it the function for geometric growth.

- ¹ GeometricGrowth <- function(popSize, lambda) { return(lambda * popSize) }
- \bullet genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6;
- 4 PopGrowthFunc <- GeometricGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- ⁶ N[1] <- Ninitial
- **O** for (index in 2:genNum) { N[index] <- PopGrowthFunc(popSize = N[index-1], $lambda = increaseRate$) }
- \bullet plot(Time, N, xlab = "Time[hours]")

[A discrete-time model of population regulation](#page-36-0) An R program for regulated populations

You can assign a function to an R-variable, just like assigning a value to a variable. The case here is similar to: $x \le 3$; $y \leq x$. Eventually, both x and y hold the value 3.

- ¹ GeometricGrowth <- function(popSize, lambda) { return(lambda * popSize) }
- ² genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6;
- ⁴ PopGrowthFunc <- GeometricGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- ⁶ N[1] <- Ninitial
- **O** for (index in 2:genNum) { N[index] <- PopGrowthFunc(popSize = N[index-1], $lambda = increaseRate$) }
- \bullet plot(Time, N, xlab = "Time[hours]")

An R program for regulated populations

Similarly, you assign a function to GeometricGrowth and the assign the contents of GeometricGrowth (i.e., the function) to PopGrowthFunc.

- ¹ GeometricGrowth <- function(popSize, lambda) { return(lambda * popSize) }
- ² genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6;
- ⁴ PopGrowthFunc <- GeometricGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- ⁶ N[1] <- Ninitial
- **O** for (index in 2:genNum) { N[index] <- PopGrowthFunc(popSize = N[index-1], $lambda = increaseRate$) }
- \bullet plot(Time, N, xlab = "Time[hours]")

An R program for regulated populations

How should we modify this program to include density-dependence?

- ¹ GeometricGrowth <- function(popSize, lambda) { return(lambda * popSize) }
- ² genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6;
- 4 PopGrowthFunc <- GeometricGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- \bullet N[1] \leq Ninitial
- **O** for (index in 2:genNum) { N[index] <- PopGrowthFunc(popSize = N[index-1], lambda = increaseRate) }
- \bullet plot(Time, N, xlab = "Time[hours]")

An R program for regulated populations

Firstly, we add the logistic growth function

- ¹ GeometricGrowth <- function(popSize, lambda) { return(lambda * popSize) }
- ² LogisticGrowth <- function(popSize, rmax, K) { return(popSize + rmax*popSize*(1-popSize/K)) }
- \odot genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6;
- ⁵ PopGrowthFunc <- GeometricGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- Ω N[1] \leq Ninitial
- ⁸ for (index in 2:genNum) $\{ N[index] < -PopGrowthFunc(popSize = N[index-1],$ $lambda = increaseRate$) }
- ⁹ plot(Time, N, xlab = "Time[hours]")

An R program for regulated populations

Secondly, we add parameters for logistic growth

- ¹ GeometricGrowth <- function(popSize, lambda) { return(lambda * popSize) }
- ² LogisticGrowth <- function(popSize, rmax, K) { return(popSize + rmax*popSize*(1-popSize/K)) }
- \odot genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
- ⁵ PopGrowthFunc <- GeometricGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- Ω N[1] \leq Ninitial
- ⁸ for (index in 2:genNum) $\{ N[index] < -PopGrowthFunc(popSize = N[index-1],$ $lambda = increaseRate$) }
- ⁹ plot(Time, N, xlab = "Time[hours]")

An R program for regulated populations

Next, we change PopGrowthFunc to use logistic instead of geometric

- ¹ GeometricGrowth <- function(popSize, lambda) { return(lambda * popSize) }
- ² LogisticGrowth <- function(popSize, rmax, K) $\{$ return(popSize + rmax*popSize*(1-popSize/K)) $\}$
- \odot genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
- ⁵ PopGrowthFunc <- LogisticGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- Ω N[1] \leq Ninitial
- ⁸ for (index in 2:genNum) $\{ N[index] < -PopGrowthFunc(popSize = N[index-1],$ $lambda = increaseRate$) }
- ⁹ plot(Time, N, xlab = "Time[hours]")

[A discrete-time model of population regulation](#page-42-0) An R program for regulated populations

Finally, we add arguments to the function call in the for-loop

- ¹ GeometricGrowth <- function(popSize, lambda) { return(lambda * popSize) }
- ² LogisticGrowth <- function(popSize, rmax, K) { return(popSize + rmax*popSize*(1-popSize/K)) }
- \odot genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
- **6** PopGrowthFunc <- LogisticGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- Ω N[1] \leq Ninitial

```
8 for ( index in 2:genNum )
  \{ N[index] < -PopGrowthFunc( popSize = N[index-1],lambda = increaseRate, rmax = maxRGR, K = capacity)}
9 plot( Time, N, xlab = "Time[hours]" )
```
An R program for regulated populations

But there is a problem. Logistic growth function does not have an argument named lambda

- ¹ GeometricGrowth <- function(popSize, lambda) { return(lambda * popSize) }
- ² LogisticGrowth <- function(popSize, rmax, K) { return(popSize + rmax*popSize*(1-popSize/K)) }
- \odot genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
- **6** PopGrowthFunc <- LogisticGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- Ω N[1] \leq Ninitial

```
8 for ( index in 2:genNum )
  { N[index] <- PopGrowthFunc( popSize = N[index-1],
  lambda = increaseRate, rmax = maxRGR, K = capacity)}
9 plot( Time, N, xlab = "Time[hours]" )
```
An R program for regulated populations

We solve that by adding the ... argument to both functions

- ¹ GeometricGrowth <- function(popSize, lambda, ...) { return(lambda * popSize) }
- ² LogisticGrowth <- function(popSize, rmax, K, ...) { return(popSize + rmax*popSize*(1-popSize/K)) }
- \bullet genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
- ⁵ PopGrowthFunc <- LogisticGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- Ω N[1] \leq Ninitial
- ⁸ for (index in 2:genNum) $\{ N[index] < -PopGrowthFunc(popSize = N[index-1],$ $lambda = increaseRate, rmax = maxRGR, K = capacity)$ }
- \bullet plot(Time, N, xlab = "Time[hours]")

An R program for regulated populations

The . . . argument allows additional arguments, unspecified in the function declaration, to be passed to the function

- ¹ GeometricGrowth <- function(popSize, lambda, ...) { return(lambda * popSize) }
- ² LogisticGrowth <- function(popSize, rmax, K, ...) { return(popSize + rmax*popSize*(1-popSize/K)) }
- \odot genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
- **6** PopGrowthFunc <- LogisticGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- Ω N[1] \leq Ninitial

```
8 for ( index in 2:genNum )
  { N[index] <- PopGrowthFunc( popSize = N[index-1],
  lambda = increaseRate, rmax = maxRGR, K = capacity)}
9 plot( Time, N, xlab = "Time[hours]" )
```
An R program for regulated populations

We can now switch between geometric and logistic growth, just by changing the parameter PopGrowthFunc

- ¹ GeometricGrowth <- function(popSize, lambda, ...) { return(lambda * popSize) }
- ² LogisticGrowth <- function(popSize, rmax, K, ...) $\{$ return(popSize + rmax*popSize*(1-popSize/K)) $\}$
- \odot genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
- **6** PopGrowthFunc <- LogisticGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- Ω N[1] \leq Ninitial

```
8 for ( index in 2:genNum )
  { N[index] <- PopGrowthFunc( popSize = N[index-1],
  lambda = increaseRate, rmax = maxRGR, K = capacity)}
9 plot( Time, N, xlab = "Time[hours]" )
```
An R program for regulated populations

Save and run the program for different cases (geometric vs. logistic, different parameter settings, etc.)

- ¹ GeometricGrowth <- function(popSize, lambda, ...) { return(lambda * popSize) }
- ² LogisticGrowth <- function(popSize, rmax, K, ...) $\{$ return(popSize + rmax*popSize*(1-popSize/K)) $\}$
- \odot genNum <- 32; Ninitial <- 1
- \bullet increaseRate <- 1.6; maxRGR <- 0.6; capacity <- 100
- **6** PopGrowthFunc <- LogisticGrowth
- \bullet N <- numeric(genNum); Time <- seq(from = 0, by = 24, $length = genNum)$
- Ω N[1] \leq Ninitial

```
8 for ( index in 2:genNum )
  { N[index] <- PopGrowthFunc( popSize = N[index-1],
  lambda = increaseRate, rmax = maxRGR, K = capacity)}
9 plot( Time, N, xlab = "Time[hours]" )
```