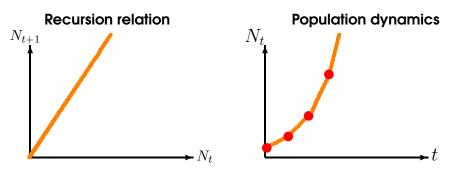
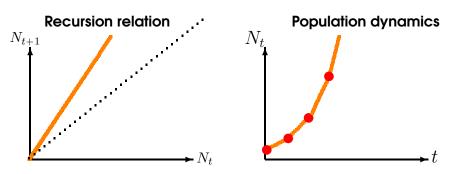
Population Cycles and Fluctuations

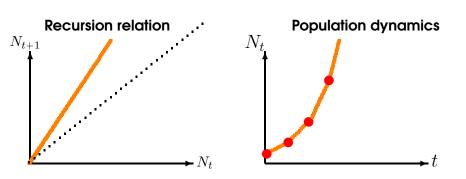
Dr. Ido Filin ifilin@univ.haifa.ac.il

31 December 2012


Outline

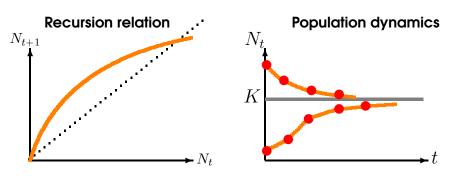

Level of compensation in density-dependence

Density-independent growth: linear recursion relation $N_{t+1} = \lambda N_t$ or $\frac{N_{t+1}}{N_t} = \lambda = const.$

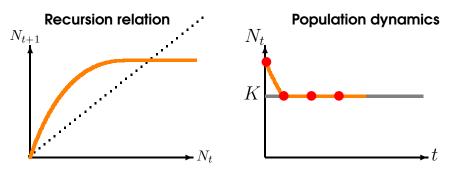

Level of compensation in density-dependence

The long-term equilibrium population size can be obtained by intersection of the N_{t+1} curve with the unity line: $N_{t+1} = N_t$ (i.e., when finite rate of increase, $\frac{N_{t+1}}{N_t}$, is equal to 1).

Level of compensation in density-dependence

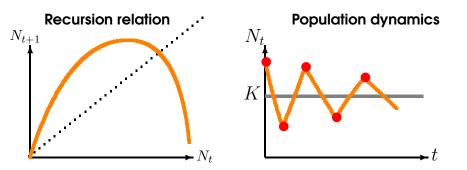

For density-independent growth there is no such intersection, and therefore, no equilibrium population size.

Level of compensation in density-dependence


Undercompensating density-dependence:

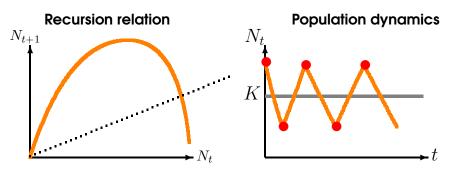
slope of recursion relation decreases over time, but it never reaches an asymptote.

Level of compensation in density-dependence

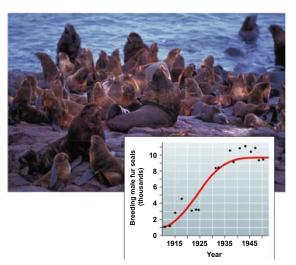

Exactly compensating density-dependence: For high enough density (N_t), $N_{t+1} = const$, independent of initial density N_t .

Level of compensation in density-dependence

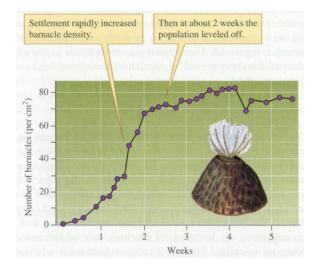
Overcompensating density-dependence:


 N_{t+1} decreases with increasing density (N_t) , if N_t is high. This type of density-dependence can potentially cause population collapse (a drop from very high N_t to very low N_{t+1}) and fluctuations in population size.

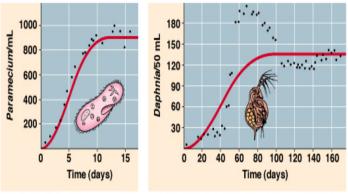
Level of compensation in density-dependence


Overcompensating density-dependence:

 N_{t+1} decreases with increasing density (N_t) , if N_t is high. This type of density-dependence can potentially cause population collapse (a drop from very high N_t to very low N_{t+1}) and fluctuations in population size.


Examples of population regulation

Population recovery of fur seals in west coast of USA.


Examples of population regulation

Stabilization of population size in settling barnacles.

Examples of population regulation

Stabilization of population size in laboratory experiments.

(a) A Paramecium population in laboratory culture (b) A Daphnia population in laboratory culture

Fluctuations in population size/density

- Self-induced
 - Time lags.
 - Overcompensating density-dependence.
 - High fecundity.
- Interspecific interactions e.g., predator-prey.
- Stochastic effects.
 - Demographic stochasticity individuals come in discrete units; random individual variation in demographic performance.
 - Environmental stochasticity random variability in the environment (e.g., among years) that affect all individuals similarly.