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Population fluctuations

Fluctuations in population size/density

Self-induced
Time lags.
Overcompensating density-dependence.
High fecundity.

Interspecific interactions – e.g., predator-prey.

Stochastic effects.

Demographic stochasticity – individuals come in discrete
units; random individual variation in demographic
performance.

Environmental stochasticity – random variability in the
environment (e.g., among years) that affect all
individuals similarly.
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Life tables and R0 calculations

Population dynamics with age-structure

Fecundity, ma, summed over all age-classes is translated
into the age-class of newborns (age 1 in the above
diagram) for any given year.

Survival from one age to the next is given by ga.

Such that l2 � g1, l3 � g1g2 and l4 � g1g2g3.
If ga � 0.5 for all ages, l2 � 0.5, l3 � 0.25, l4 � 0.125, etc.

Obviously, the population finite rate of increase or net
reproductive rate will depend on the values of
age-dependent survival and fecundity.
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Life tables and R0 calculations

Population dynamics with age-structure

For example, assume that reproduction occurs only in
the fourth year (m2 � m3 � 0), and l4 � 0.1, while m4 � 5.

Starting with 100 newborns (age 1) after 3 years only 10
will remain – i.e., only 10 successfully reached age 4.

They then reproduce and die. leaving after them 50
newborns.

Compared to the 100 individuals that started the parent
generation, there are now only 50 individuals starting
the second generation. ñ R0 or λ in this case are 0.5.
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Life tables and R0 calculations

Population dynamics with age-structure

The general expression for R0 given age-dependent
survival and fecundity is

R0 �
¸
a

lama .

This is a weighted sum where each age-dependent
fecundity value (ma) is weighted according to the
probability (la) to reach that age alive.

In the above diagram, given l1 � 1, l2 � 0.5, l3 � 0.25, l4 � 0

and m1 � 0, m2 � 2, m3 � 0.5 and m4 � 1000, we get
R0 � 0� 1� 0.125� 0 � 1.125
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Life tables and R0 calculations

Population dynamics with age-structure
There is a similar equation for r, which is given by the
solution to ¸

a

e�ralama � 1 .

Exponential growth with continuous deaths and births,
r � b - d, R0 � b{d ; or the case of only a single lifetime
reproductive event (semelparous lifecycle; e.g.,
unicellulars), r � logR0

T ; are both special cases of the
above general equations for r and R0 (assuming
specific patterns of la and ma).

Generation time is also found from age schedules of
survival and fecundity.

Generation time is often calculated as a weighted
average of reproductive ages:

T �

°
a alama°
a lama

�

°
a alama

R0
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Life tables and R0 calculations

Population dynamics with age-structure

In the above diagram, given l1 � 1, l2 � 0.5, l3 � 0.25, l4 � 0

and m1 � 0, m2 � 2, m3 � 0.5 and m4 � 1000, we get
R0 � 0� 1� 0.125� 0 � 1.125

The generation time in this example is

T �
0� 2 � 1� 3 � 0.125� 0

1.125
� 2.1111 years

An approximate value of r is given by

r �
logR0

T
� 0.0558 year�1
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Life tables and R0 calculations

Life Tables
Calculations of R0, T and r are often aided by
constructing a life table.
The simplest life table is a cohort life table, in which one
follows the survival and fecundity schedules of a single
age-group (cohort) throughout its existence from birth
until (in theory) the last of them dies.
For example, age-dependent survival and fecundity of
a representative group of human females born 1900 in
the USA.
One records events of deaths and births and
summarizes them in a table, e.g.,

age, x no. survivors, ax lx mx lxmx . . .
0 1000 1 0 0
1 965 0.965 0 0
. . .
27 890 0.89 0.7 0.623
. . .
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Life tables and R0 calculations

Life Tables
After constructing the table, one can sum up the lxmx

column to get R0.

Or an xlxmx column to get generation time, T .

Or draw graphs of lx or mx or lxmx to study the patterns
of age-dependent survival, fecundity, or effective
fecundity (respectively) in the population.

Obviously, for long-lived organisms such as humans
today, and given the tremendous technological and
social changes occurring during a single lifetime,
patterns of survival and fecundity will be different for
different cohorts (year groups).

But in natural populations, such patterns, obtained from
a single cohort, may be representative of specific
species or populations, and remain more or less the
same for several generations.
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Life tables and R0 calculations

Life Tables
An example of a life table for a barnacle population
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Life tables and R0 calculations

Life Tables
A second type of life table is a static life table, in which
one records deaths and births in all age-classes
simultaneously during one year (or a similarly fixed
period), and then constructs the relevant columns of lx,
mx, etc.

Nowadays, there are more modern statistical
techniques to investigate schedules of mortality and
reproductive events – this group of statistical methods is
collectively known as survival analysis or failure-time
analysis and is widely used in medicine, engineering,
and also ecology.

One can use survival analysis techniques to investigate
not only events of mortality or reproduction, but also
other vital rates, such as timing of developmental
transitions (molts, pupation, emergence,
metamorphosis, etc.).
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Interspecific interactions – competition and predation

Interspecific interactions
Just as per-capita performance of individuals in a
population may be affected by presence of
conspecifics (intraspecific competition), it can also be
affected by presence of individuals of other species:

Competitors
Predators
Prey
Parasites
etc.

These interactions are density-dependent.

For example: the more predators, the higher is
per-capita mortality rate of prey.

We will concentrate on two types of interspecific
interactions:

1 Interspecific competition.
2 Predation, i.e., Predator-prey interaction.
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Interspecific interactions – competition and predation

Interspecific interactions
By analyzing interspecific interactions, we apply
methods from population ecology to problems in
community ecology – e.g., exclusion or coexistence of
species.

On the other hand, studying interspecific interactions
may provide insight into population phenomena, such
as population cycles (e.g., predator-prey cycles).

Interspecific interactions relate to the concept of niche,
a basic concept in ecology.

The niche is roughly the role of the organism/species in
the ecosystem:

Range of environmental conditions/microhabitats it
occupies,
Role in food web – what it eats and what eats it.

Level of niche overlap / differentiation determines how
strongly species will interact.

OUTLINE 8/ 16



Interspecific interactions – competition and predation

Interspecific competition

An example, species of gerbils in sandy habitats in Israel.
Two species: Gerbillus pyramidum (GP)
and G. andersoni allenbyi (GA).
Three types of sandy habitat: shifting, semi-stabilized
and stabilized sand.

GP prefers the semi-stabilized and shifting sands.

GA prefers the semi-stabilized and stabilized sands.

Overall, there is niche differentiation between the two
species.

However, niche overlap occurs at the semi-stabilized
sand habitat – leading to interspecific competition.
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Interspecific interactions – competition and predation

Interspecific competition

Because GP is significantly larger in body size/mass,
competition is asymmetric (often, interference).

Leading to competitive exclusion of GA from the
semi-stabilized sandy habitat, wherever both species
occur.

ñ The realized niche of GA is narrower than its
fundamental niche, in the presence of the competing
species, GP.

However, on the larger scale of the entire sand dunes
ecosystem, the two species coexist, due to niche
differentiation.
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Interspecific interactions – competition and predation

Interspecific competition

This example helps to demonstrate general patterns
related to interspecific competition:

1 The realized niche of a species is often significantly
narrower than its fundamental niche, because of
interactions with other species (competitors, predators,
etc.).

2 Interspecific competition (like intraspecific) can be of
either the exploitation or interference type (or a
combination of the two), and is often asymmetric – i.e.,
one species suffers stronger effects.
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Interspecific interactions – competition and predation

Interspecific competition

This example helps to demonstrate general patterns
related to interspecific competition:

3 The outcome of interspecific competition between two
species can be either competitive exclusion of one of
them, or coexistence of the two species.

4 Coexistence is facilitated by niche differentiation – which
tends to decrease the strength of competition between
the two species.

5 We can demonstrate and study interspecific
competition by experimentally removing competitors
ñ allowing the species to expand and occupy its entire
fundamental niche.
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Interspecific interactions – competition and predation

The Lotka-Volterra competition model
The Lotka-Volterra model extends the logistic growth
model to describe both intraspecific and interspecific
competition.

Consider species #1 (e.g., GP).

Its population dynamics follows the logistic growth

dN1

dt
� r1N1

�
1�

N1

K1



.

In the presence of a competing species (species #2;
e.g., GA), the dynamics of species #1 becomes

dN1

dt
� r1N1

�
1�

N1 �α12N2

K1



.

The presence of species #2 also negatively affects the
per-capita performance of individuals of species #1.
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Interspecific interactions – competition and predation

The Lotka-Volterra competition model
In the presence of a competing species (species #2;
e.g., GA), the dynamics of species #1 becomes

dN1

dt
� r1N1

�
1�

N1 �α12N2

K1



.

The parameter α12 is called competition coefficient –
a conversion factor that allows for different effects of
individuals of species #1 and individuals of species #2.

α12 ¡ 1, if the negative effect of an additional
#2-individual on #1 per-capita growth is stronger than the
effect of an additional #1-individual.

α12   1, if the reverse.

For example: if #1 = GP and #2 = GA, we expect α12   1,
because of the dominance of GP over GA (asymmetric
competition).

Similarly, we expect α21 ¡ 1, for the same reason.
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Interspecific interactions – competition and predation

The Lotka-Volterra competition model
The full model is given by the two dynamics equations
for the two species:

dN1

dt
� r1N1

�
1�

N1 � α12N2

K1



,

dN2

dt
� r2N2

�
1�

N2 � α21N1

K2



.

Therefore, this is a two-dimensional system – i.e., the
state of the system is described by two state-variables,
N1 and N2.

Other multi-dimensional systems in population ecology
include

Predator-prey – modeling numbers of both prey and
predator.
Structured populations – e.g., following change in
numbers of eggs, juveniles, adults, etc.
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Interspecific interactions – competition and predation

The Lotka-Volterra competition model
The full model is given by the two dynamics equations
for the two species:

dN1

dt
� r1N1

�
1�

N1 � α12N2

K1



,

dN2

dt
� r2N2

�
1�

N2 � α21N1

K2



.

In exercise 3 we also had a two-dimensional system: we
followed the population dynamics of both the wild-type
and the melanic morphs of the peppered moth.

However, unlike in exercise 3, in the Lotka-Volterra the
dynamics of the species is coupled – i.e., the dynamics
of #1 is affected by #2, and vice versa.

Coupling can lead to complex dynamic patterns,
e.g., predator-prey cycles.
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Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition
Because the system is two-dimensional, the state is described
by a point in two-dimensional space.

-

6

N2

N1

K
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Interspecific interactions – competition and predation

Stationarity and stability
Stationary points represent special values of the
variable that do not change over time.
I.e., if we start at a stationary point, we remain on it on
subsequent times.
Therefore, stationary points are defined zero rate of
change: ∆N � 0 or dN{dt � 0.
E.g., for the logistic growth model we have two
stationary points, N � 0 and N � K:

- N0
l

K
l

K{2

-

---

1.25K

�

� �

For exponential growth, only N � 0:

- N0
l -�-� -�
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Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition
Three trivial stationary points.
But are they stable? And is there a stationary point in which
the two species coexist?
To be able to answer, we need to find the zero-isoclines of
the two species before we can answer that.

-

6

N2

N1l

l

l
p0, 0q pK1, 0q

p0,K2q K
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Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition
The zero-isocline of species #1 is a curve made of all the
points for which dN1{dt � 0.
In the Lotka-Volterra model it is a straight line connecting K1

on the N1-axis with K1{α12 on the N2 -axis.

-

6

N2

N1l

l

l
p0, 0q pK1, 0q

p0,K2q K

p0,K1{α12q
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Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition
Above the zero-isocline, dN1{dt   0.
Below the zero-isocline, dN1{dt ¡ 0.

-

6

N2

N1l

l

l
p0, 0q pK1, 0q

p0,K2q K

p0,K1{α12q

-

�
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Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition
Similarly, on the zero-isocline of species #1 dN2{dt � 0.
In the Lotka-Volterra model it is a straight line connecting K2

on the N2-axis with K2{α21 on the N1 -axis.

-

6

N2

N1l

l

l
p0, 0q pK1, 0q

p0,K2q K

pK2{α21, 0q
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Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition
Above the zero-isocline, dN2{dt   0.
Below the zero-isocline, dN2{dt ¡ 0.

-

6

N2

N1l

l

l
p0, 0q pK1, 0q

p0,K2q K

pK2{α21, 0q

6
?

OUTLINE 13/ 16



Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition
Combining the two zero-isoclines, if an intersection exists, it
constitutes a fourth stationary point
This stationary point describes coexistence.
Unlike the other three, which describe exclusion of at least
one species.

-

6

N2

N1l

l

l
p0, 0q pK1, 0q

p0,K2q K

p0,K1{α12q

pK2{α21, 0q

l
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Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition
But is the coexistence stable? i.e., following a perturbation,
would the system tend to return towards the coexistence
point? Or would it run away towards one of the other sta-
tionary points, which describe competitive exclusion?

-

6

N2

N1l

l

l
p0, 0q pK1, 0q

p0,K2q K

p0,K1{α12q

pK2{α21, 0q

l
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Interspecific interactions – competition and predation

Stationarity and stability
A stationary point can be either stable or unstable.

Any deviation from a stable stationary point would tend
to decrease over time – i.e., a restoring "force"
operating towards the point.

Any deviation from an unstable stationary point would
tend to increase over time – i.e., a repelling "force"
away from the point.

We can determine stability graphically.

E.g., for the logistic model N � 0 is unstable, and N � K
is stable:

- N0
l

K
l

K{2

- ---

1.25K

�� �

- N0
l
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Interspecific interactions – competition and predation

Stationarity and stability
For the exponential model, N � 0 is unstable, if r ¡ 0:

- N0
l - - -

And stable, if r   0:

- N0
l � � �

Ultimately, checking for stability requires mathematical
analysis using methods from calculus, linear algebra
and nonlinear dynamics.

But the graphical method is sufficient for our purposes.

We will return to this subject when we talk about
interspecific competition.
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Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition
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Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition

Four different set-ups of the two zero-isoclines.

Only one leads to stable coexistence: K1   K2{α21 and
K2   K1{α12.

Assuming similar carrying capacities of the two species
(K1 � K2), this leads to the conclusion that
Stable coexistence requires that interspecific
competition be weaker than intraspecific competition.

Which is a different way to state the competitive
exculsion principle – species exclude one the other, if
their niches overlap.

Or in other words, coexistence requires sufficient niche
differentiation (such that the competition coefficients
will be lower than 1).
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Interspecific interactions – competition and predation

Zero isoclines and the outcome of competition
Example: GP (species #1) is dominant over GA (species #2) in
the semi-stabilized habitat, therefore, competition is
asymmetric and we expect α12 ! 1 and α21 " 1.

Assuming that the carrying capacity of GA is slightly higher
than GP, i.e., K2 ¥ K1 (because of the larger body mass of
GP), we finally obtain

K1{α12 ¡ K2 ¥ K1 ¡ K2{α21 ,

which leads to competitive exclusion, as indeed observed in
the semi-stabilized sands.

Note that in the Lotka-Volterra model the outcome of
competition depends only on carrying capacities and
competition coefficients, not on the maximum per-capita
rates, r1 and r2.

These two parameters will nonetheless determine how fast
the dynamics would be; e.g., would competitive exclusion
occur quickly or slowly.
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Interspecific interactions – competition and predation

The Lotka-Volterra predator-prey model:
vertical and horizontal zero-isoclines lead to population cycles

Prey species (N) and predator species (P ).
Prey zero-isocline is a horizontal line.
Predator zero-isocline is a vertical line.
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Interspecific interactions – competition and predation

The Lotka-Volterra predator-prey model:
vertical and horizontal zero-isoclines lead to population cycles

There is a stationary point. However, it is unstable.
Any deviation from the stationary point result in periodic
oscillations – predator-prey oscillations – that persist
indefinitely.
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