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Introduction

In the past three decades, dynamic optimization has been

widely and successfully applied to a myriad of questions

and problems in evolutionary biology. Dynamic optimi-

zation models can roughly be divided into deterministic

and stochastic. In deterministic models, individuals that

are initially identical, remain identical in subsequent

times, given that all follow the same strategy. Such

models have used a variety of optimization methods:

static optimization (e.g. Kozlowski & Wiegert, 1986),

Pontryagin’s maximum principle (e.g. Schaffer, 1983;

Perrin & Sibly, 1993), dynamic programming (e.g. Lud-

wig & Rowe, 1990) and have derived many important

results; for example, the dependence of optimal switches

between growth and reproduction and other life-history

transitions (e.g. metamorphosis), on the ratio of size-

dependent production over size-dependent mortality

(e.g. Werner & Gilliam, 1984; Perrin & Sibly, 1993;

Hutchinson et al., 1997; Kozlowski, 2006); conditions for

determinate vs. indeterminate growth (e.g. King &

Roughgarden, 1982; Sibly et al., 1985; Perrin et al.,

1993; Kozlowski & Teriokhin, 1999) and optimal patterns

of simultaneous allocation to several structures (i.e.

optimal patterns of allometric growth; Iwasa & Rough-

garden, 1984; Perrin, 1992; Irie & Iwasa, 2005).

Stochastic models additionally incorporate random

components in the dynamics of an individual’s state

(e.g. due to random variation in prey capture success;

Tenhumberg et al., 2000). In these models, even initially

identical individuals that follow the same optimal strat-

egy diverge in their subsequent growth and develop-

ment. Optimization under such stochastic state dynamics

was mainly investigated using stochastic dynamic pro-

gramming (e.g. Houston & McNamara, 1999; Clark &

Mangel, 2000). Important results of these studies concern

risk-sensitive foraging, the energy–predation trade-off

and state-dependent life histories.

Diffusion models may serve as a framework for

analysing situations where consumption and growth

vary stochastically. Diffusion processes have played

prominent roles in many subfields of ecology and
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Abstract

Using diffusion processes, I model stochastic individual growth, given

exogenous hazards and starvation risk. By maximizing survival to final size,

optimal life histories (e.g. switching size for habitat ⁄ dietary shift) are

determined by two ratios: mean growth rate over growth variance (diffusion

coefficient) and mortality rate over mean growth rate; all are size dependent.

For example, switching size decreases with either ratio, if both are positive. I

provide examples and compare with previous work on risk-sensitive foraging

and the energy–predation trade-off. I then decompose individual size into

reversibly and irreversibly growing components, e.g. reserves and structure. I

provide a general expression for optimal structural growth, when reserves

grow stochastically. I conclude that increased growth variance of reserves

delays structural growth (raises threshold size for its commencement) but may

eventually lead to larger structures. The effect depends on whether the

structural trait is related to foraging or defence. Implications for population

dynamics are discussed.
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evolutionary biology: dispersal and animal movement

(e.g. Okubo & Levin, 2001), stochastic population

dynamics (e.g. Lande et al., 2003) and population and

quantitative genetics (e.g. Kimura, 1965). In relation to

individual growth and life history, McNamara (1983,

1984) (Houston & McNamara, 1985; see also McNamara

et al., 2001) used diffusion processes to model optimal

risk-sensitive foraging. Houston et al. (1993) used a

diffusion approximation in the context of the energy–

predation trade-off, when energy gain is stochastic. In

addition, Iwasa (1991) used a diffusion process to study

optimal patterns of allocation to vegetative growth vs.

reproduction in plants, under fluctuating resource levels.

Finally, Hara (1984a,b) and Hara et al. (1991) applied

diffusion equations to model ‘noisy’ growth of individ-

uals in the context of dynamics of plant size distributions.

Kirkpatrick (1984) similarly used a white-noise process

in modelling stochastic growth in a size-based demo-

graphic model.

In this paper, I extend the use of such diffusion models,

to investigate the effect of stochastic growth and energy

budget on optimal life histories, under starvation risk and

exogenous hazards (e.g. predation). I first provide some

general results, regarding a reversibly growing size

measure (e.g. total mass or mass of energy reserves),

and relate these results to previous work (e.g. Houston

et al., 1993). Then I extend the analysis to consider

simultaneous growth of both structural mass (growing

irreversibly) and energy reserves (growing reversibly

according to a diffusion process). I derive general

expressions for the optimal growth of the structural trait,

given that stochasticity in reserves entails starvation risk,

and individuals are also exposed to exogenous hazards.

I then use the results of this general analysis to

examine some special cases. For example, a purely

defensive trait that reduces exogenous mortality but also

impairs foraging ability (or conversely, for a foraging-

improving trait). I study the effects of increasing the

noise in the growth dynamics of reserves, on the optimal

(irreversible) growth of the structural trait. Finally, I

draw in the Discussion section some important conse-

quences to population dynamics and stability.

Basic derivations

Survival-to-size when growth is formulated
as a diffusion process

I define an individual’s state by its size, a continuous

variable, denoted by y. The size of an individual can both

increase and decrease over time (but see the section

concerning structural growth). A typical such size vari-

able may be the mass of energy reserves. Moreover, the

dynamics of y(t) (where t denotes time) is described by a

diffusion process with mean growth rate, given by g(y),

and variance in growth, given by r2(y). (It is important to

note that the units of r2 are [size2 ⁄ time], and not

[size2 ⁄ time2] as expected for variance in growth rates.

That is because r2 is a diffusion coefficient, i.e. it

describes the rate of increase in the variance of size,

due to stochasticity in growth.) I shall refer to g as the

mean growth rate, and to r2 as the growth variance.

The mean growth rate g(y) captures the mean balance

of input and output flows of energy and mass (Kooijman,

2000) that cause changes in the state of individuals. For

example, assimilation of consumed food (input) and

metabolic maintenance costs (output). The variance r2(y)

captures the random fluctuations around this mean

growth rate. For example, due to random variation in

food availability or capture success (Iwasa, 1991; Ten-

humberg et al., 2000; Fujiwara et al., 2004). Because of

this random variation in the growth of individuals, some

may experience size decrease over an extended period,

even if the mean (population-wise) growth rate is

positive (as well as vice versa). If size y(t) falls below a

threshold level, denoted by a, the individual dies of

starvation. I refer to a as the starvation boundary.

In addition to starvation risk, the individual is subject

to various exogenous hazards, for example: predation

and disease. These are captured by the mortality or

hazard rate l(y) (also known as killing rate; Karlin &

Taylor, 1981, p. 161). Survival probability to some final

size b (b > a) from an initial size y (a £ y £ b), given both

risk of starvation and exogenous hazards, will be denoted

by S(y; a, b).

Derivations and sections below will use the following

two quantities: u(y) = g(y) ⁄ r2(y), and q(y) = l(y) ⁄ g(y).

Using these expressions, I find that S(y; a, b) obeys the

following differential equation

d2S

dy2
þ 2uðyÞ dS

dy
� 2uðyÞqðyÞS ¼ 0 ð1Þ

with boundary conditions

SðaÞ ¼ 0; SðbÞ ¼ 1 ð2Þ

(see Appendix 1). (Note that the signs of u and q are

always the same, and depend on the sign of g. So, the

product uq = l ⁄ r2 is always non-negative).

Given functions u(y) and q(y), I can solve eqn 1 and

obtain S(y; a, b). Figure 1 presents some examples.

Additionally, Fig. 1a demonstrates that the quantity u
serves to measure how stochastic the growth dynamics is.

When u fi ±¥, the growth process behaves determinis-

tically (e.g. as u fi +¥, S fi 1 for all y > a; Fig. 1a),

whereas, when u fi 0, the random fluctuations in

growth are the dominant factor, and growth behaves like

Brownian motion (i.e. the growth process is an unbiased

random walk; in that case, S(y) is linear; Fig. 1a). I note

that u is not dimensionless, as it has units of [size)1].

The quantity q(y) captures the exogenous hazard per

unit of (mean expected) growth. If the organism may

choose among several options (e.g. habitats), each with
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different expected growth rate g(y) and hazard rate l(y),

then q = l ⁄ g weighs the costs (in terms of exogenous

hazards) vs. the benefits (in term of expected growth rate)

for each such option. I note that q is exactly the quantity

that is minimized in the well-known ‘minimize l ⁄ g’ rule

of Werner & Gilliam (1984), concerning optimal decisions

such as niche shifts and timing of metamorphosis (see also

Werner, 1988; Ludwig & Rowe, 1990; Houston et al.,

1993). This rule applies only when growth is determin-

istic. For stochastic growth, Houston et al.(1993) provide a

different expression, that involves the variance in growth

as well (see below). q also has units of [size)1].

The special case of u and q constants, independent of y,

can be solved analytically:

Sðy; a; bÞ ¼ sinh½vðy� aÞ�
sinh½vðb� aÞ� exp½uðb� yÞ� ð3Þ

where

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 2uq

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

r4
þ 2l

r2

r
ð4Þ

The quantity v (eqn 4) combines both starvation risk

(decreasing with u) and exogenous hazards (increasing

with q), to determine how fast survival probability to b

increases with initial size y.

In the following sections, I repeatedly use eqns 3 and 4

(and related expressions, e.g. eqn 9). Therefore, some

justification for considering u and q independent of y is

required. First, mathematically, this is the simplest case,

and therefore useful in illustrating several of the (more

general) conclusions I arrive at in following sections.

Second, in some biologically relevant cases, growth

(g and r2) and mortality (l) may be independent of y

(or only weakly dependent on it). For example, if y

represents energy reserves (and these have no metabolic

maintenance costs as Kooijman, 2000 suggests, p. 90

therein), then the growth and exogenous mortality rates

are probably much more sensitive to other variables (e.g.

control variables, representing behavioural decisions or

additional individual state variables, such as size of

structural traits; see below). Third, eqns 3 and 4 are

useful also when u and q are piecewise independent of y,

for example, as when there is step-like habitat or diet

shift that is dependent on the level of energy reserves

(represented by y) (see below). Finally, I also consider

cases where u and q do depend explicitly on y (e.g.

Fig. 2d), so to demonstrate how my general methods and

conclusions are applied in more complicated situations.

The maximum process and the hazard density

Survival probability from initial time t0 to some subse-

quent time t, i.e. over the time interval [t0, t], is given by

the probability that an individual, alive at time t0, has a
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Fig. 1 Examples of survival to size as a function of initial size. In these graphs the size axis has been rendered dimensionless by translation

and rescaling, such that the starvation boundary is a = 0 and the final target size is b = 1. (a) The effect of the value of u on the form of

the survival probability curve (q = 0 and u is independent of size for all curves in this panel): u = 100 (·); u = 10 (s); u = 1 (4); u = 0 (*);

u = )1 (h); u = )10 (,). Note that as u increases (tends towards +¥), the survival curve tends towards S(y) = 1 for all y > a, i.e. the case of

deterministic growth with positive growth rate (g > 0). As u decreases (tends towards )¥), the survival curve tends towards S(y) = 0 for all

y < b, i.e. the case of deterministic growth with negative growth rate. Finally, as u tends to 0, the survival curve approaches a straight line, i.e.

the case of Brownian motion-like growth (g = 0, r2 „ 0). (b) Exogenous hazard has been added (i.e. q „ 0): q = 0.1, u = 10 (·); q = 1,

u = 10 (s); q = 10, u = 10 (4); q = 0.1, u = 0.25 (*); q = 1, u = 0.25 (h); q = 10, u = 0.25 (,). Note that differences among survival curves,

due to different q-values, decrease as the value of u approaches 0. Thus, as growth dynamics becomes increasingly less deterministic and

approaches the limit of Brownian motion (i.e. u tends to 0), it is starvation mortality (rather than exogenous hazards) that most affects

survival to final size. Moreover, note that, for high values of q (4 and , in panel b), making the growth dynamics more stochastic (i.e.

decreasing the absolute value of u) increases survival to final size. (c) u is size dependent (q = 0 for this panel): u = 20(2y ) 1) (·), i.e.

increasing linearly from )20 at y = 0 to +20 at y = 1; u = 20(1 ) 2y) (s); u = 0.5(1 ) 2y) (4); u = 20 (*); u = 20(2y2 ) 1) (h);

u = 20(2y0.5 ) 1) (,). Compare the form of S(y) when u is increasing from )20 to +20, with that of u decreasing from +20 to )20 (· and

s respectively). Additionally, when the range of u-values induced by the size dependence is such that u is never far from zero (4), S(y) is

still very much close to the Brownian motion limit (i.e. S linear in y). When u(y) may receive values far from zero, size dependence may cause

different S(y) curves, than those attainable by size-independent u (for example, compare * with ·). Finally, for the three cases of ·, h and

,, u increases from )20 at y = 0 to +20 at y = 1. However, the specific form of this size dependence of u clearly has an important effect

on the form of S(y), because u receives values far from zero in all three cases, but goes through u = 0 at different values of y.
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failure time that exceeds t. This can be written as S(t0,

t) = Pr{T > t}, where T represents failure time. In a similar

fashion, I may define survival to size (i.e. S[y; a, b] of the

previous section) as the probability of survival through a

size interval [y0, b] (b > y0). In Appendix 2, I demonstrate

that

Sðy0; bÞ ¼ PrfhðTÞ � bjyðt0Þ ¼ y0g ð5Þ

where T is again the failure time and h(t) is the maximum

process of size (i.e. the maximum process of y[t])

hðtÞ ¼ max
t0�s�t

yðsÞ ð6Þ

(The use of the term ‘process’ in this context is in

relation to stochastic processes. That is, y[t] is the

stochastic process of size vs. time. Similarly, h(t) is also

a stochastic process, obtained from y[t] by use of eqn 6.)

h(t) is a ‘memory’ that retains the maximal size reached

up to time t, and is updated each time the individual

reaches a new maximum size. Clearly, h(T) (in eqn 5) is

the maximum size reached by an individual during its

entire lifetime (more accurately, between initial time t0
and its time of death). I shall return to the maximum

process below, in the section concerning structural

growth.

Equation 5 defines a survivor function (Kalbfleisch &

Prentice, 2002, ch. 1), where the value of the maximum

process at failure (i.e. h[T]) plays the role of failure time. I

can now appropriately define a hazard function for

survival to size (eqn 5) (analogous to the relationship

between survival over time and the hazard rate; Kalb-

fleisch & Prentice, 2002; Appendix 2). Thus,

Sðy0; bÞ ¼ exp �
Z b

y0

gðyÞdy

� �
ð7Þ

where g(y) is the hazard function of survival to size. For

brevity, I call g hazard density (like u, q and v, it has units

of [size)1]). The hazard density describes mortality per

unit of increase in size (in a similar manner to mortal-

ity ⁄ hazard rate, describing mortality per unit of time). As

such, the hazard density, g(y), summarizes the different

ways by which an individual may die, starting from size y,

and before reaching size y + dy (where dy is small). These

include dropping in size all the way to the starvation

boundary, or being exposed to external hazards for

variable durations, because growth is stochastic (and

thus, there are many different growth trajectories the

individual may follow from y to y + dy).

When growth is described by a diffusion process

(previous section), g(y) satisfies

@g
@y
¼ �g2 � 2uðg� qÞ ð8Þ

(see Appendix 2). Equation 8 describes the size depen-

dence of the hazard density. I can gain further insight

into this size dependence of g(y) by considering the

special case of u and q independent of y. Using eqns 3 and 7,

I obtain

gðyÞ ¼ v coth½vðy� aÞ� � u ð9Þ

(y ‡ a). For small values of (y ) a) eqn 9 becomes

g(y) � [1 ⁄ (y ) a) ) u]. Thus, for sizes close enough to
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Fig. 2 Optimal control curves, u*(y) (thick lines), and their respec-

tive survival curves S(y, u*[y]) (thin lines). The control variable u is

confined to vary between 0 and 1, e.g. representing a fraction of the

day spent foraging. (a) q = 1, u = 1 + u (dash-dotted); q = 1,

u = 10(1 + u) (solid); q = 1, u = 1 + 19u (dashed). Note that the

value of the switching size y* depends only on the maximal value of

u (e.g. y* is the same for the two latter cases). (b) Effect of changing

the value of q on the switching size y*: q = 1, u = 1 + u (dash-

dotted); q = 4, u = 1 + u (solid); q = 4, u = 1 + 19u (dashed).

(c) Both u and q are proportional to the control variable u: q = u,

u = 10u (dash-dotted); q = u, u = u (solid); q = 10u, u = 10u

(dashed). Note that despite the great difference in optimal control,

the survival probability curves of the two latter cases are similar. In

all three cases, bang–bang control is no longer optimal, and u*(y)

takes intermediate values between 0 and 1. As the hazard density g
decreases with increasing size, q must be decreased (by decreasing u)

so to keep the difference (g ) q) in eqn 10 positive. (d) A model with

q and u depending on both the control variable u and size y. Food

assimilation rate depends on both searching effort u and handling

effort 1 ) u such that mean growth rate is g(u, y) = 4u(1 ) u) ) y,

where the last term represents metabolic maintenance costs pro-

portional to size y. The growth variance is the sum of variance in

food assimilation and variance in metabolic maintenance costs:

r2(u,y) = u(1 ) u)2 + 0.01(0.01 + y2). Mortality rate is proportional

to searching effort, and increases at an accelerating manner with

size: l(u, y) = u(0.5 + y2). Curves presented in the panel: the optimal

control (solid); nonoptimal randomly generated control (dash-

dotted); suboptimal control based on maximization of mean

expected assimilation: u(y) = 0.5 (dashed).

Stochastic growth and optimal life history 1255

ª 2 0 0 9 T H E A U T H O R . J . E V O L . B I O L . 2 2 ( 2 0 0 9 ) 1 2 5 2 – 1 2 6 7

J O U R N A L C O M P I L A T I O N ª 2 0 0 9 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



the starvation boundary a (as a rule of thumb: [v(y ) a)]

< 0.5) the hazard density decreases steeply with increas-

ing size, and goes to infinity as y approaches a. The

expression 1 ⁄ v determines the range of sizes, above a, in

which starvation is the predominant cause of mortality

(as opposed to exogenous hazards).

As (y ) a) increases, g approaches the limit g¥ = v ) u.

Given eqn 4 for v, this last expression for g¥ is identical to

an expression by Houston et al. (1993, their eqn 7).

Interestingly, when u, q > 0, g¥ is always lower than q,

which is the value of g when growth is deterministic

(Werner & Gilliam, 1984). Therefore, once the individual

is large enough such that starvation no longer poses a

threat (as a rule of thumb: [v(y ) a)] > 2), stochasticity in

growth decreases the hazard density, i.e. the mortality

per unit of size gained, by allowing the individual to

achieve higher than average growth rates, and thus reach

the final size faster (see also Houston et al., 1993;

Houston & McNamara, 1999, p. 123).

Optimal life histories when growth is
stochastic

State-dependent life histories

In addition to size (y), u and q may also depend on

some control variables, summarized by a vector u, i.e.

u = u(y,u) and q = q(y,u). For example, u may repre-

sent foraging effort or habitat choice. In such cases, the

organism may choose u (e.g. habitat or level of

foraging effort) in order to satisfy some optimality

criterion. I would like to find the optimal control

at each size, i.e. a function u(y) that maximizes fitness.

As a fitness measure, I use F = S(y0,b)R(b,y0),

where S(y0,b) is given by eqn 7, and R(b,y0) represents

a terminal reward (Houston & McNamara, 1999, p.

26), gained once the organism survived to the final

size b. For example, R(b,y0) may represent fecundity,

which depends on both the adult size (final size b)

and the offspring ⁄ propagule size (initial size y0).

Maximizing

log F ¼ log Rþ log S ¼ log½Rðy0; bÞ� �
Z b

y0

gðyÞdy;

and given eqn 8 for the size dependence of g, I obtain the

following condition for the optimal control

max
u
fuðy;uÞ½gðyÞ � qðy;uÞ�g ð10Þ

As an illustration, consider the case of u independent on

size and q constant, i.e. u = u(u), q = const. A constant q
(independent of both y and u) may, for example, describe

a situation where both mean growth rate and exogenous

mortality rate are proportional to the level of foraging

effort (e.g. fraction of a day spent foraging), represented

by u. The conclusions below, concerning the optimal

control (see next paragraph), extend to situations where q
depends on y but is independent of u (or only weakly

dependent on the control variables, i.e. on behavioural

decisions made by the individual).

Let both u and q be positive for all possible values of u.

In that case, at small sizes, close to the starvation

boundary a (where g > q), u(u) should be maximized,

whereas at larger sizes (where g < q) the optimal control

minimizes u(u) (see Fig. 2a). The size, at which the

optimal control changes from maximizing u to minimiz-

ing it, is the switching size, denoted by y*.

The interpretation of this ‘first maximize then mini-

mize u0 rule may vary among cases, depending on

whether it is the mean growth rate g or the growth

variance r2 that vary with u (recall that u = g ⁄ r2). If

g = const and r2 = r2(u), then when size is small (y < y*)

one should minimize the growth variance, whereas

when size is large enough (y > y*) the growth variance

should be maximized. This result has been previously

derived by Merad & McNamara (1994) (see also Houston

et al., 1993). Once individuals are clear of the range of

sizes where starvation risk is high, it is optimal to increase

stochasticity of growth. This is a consequence of Jensen’s

inequality, where the benefit (in terms of survival

probability to final size b) of growing above mean rate

(due to high stochasticity), outweighs the costs due to the

possibility of also growing below that mean rate.

However, if it is the mean growth rate that varies with

the control variable, i.e. g = g(u) and r2 = const, the

interpretation of the above ‘first maximize then minimize

u’ rule is different. The initial maximization of u is now

interpreted as maximizing growth rate close to the

starvation boundary, in order to most rapidly ‘escape’

the size range where starvation probability is high. For

larger sizes (y > y*) the minimization of u takes the

interpretation of minimizing mortality rate: l = qg(u).

Therefore, even though these two extreme cases are

biologically distinct, the same expression (i.e. eqn 10

with u = u[u] and q = const) defines the optimal control

for both, as well as for all intermediate cases where both g

and r2 vary with u.

Finally, the value of the switching size, y*, can be found

using eqn 9: y* satisfies vmax coth½vmaxðy� � aÞ� ¼ umax þ q;
where umax = max[u(u) ] and vmax is given by eqn 4 with

u = umax. Figure 2a,b demonstrates that y* decreases as

either umax or q increases. Additional examples of optimal

control, for cases other than u = u(u) and q = const, are

also presented in Fig. 2.

Irreversible (structural) growth when reserve
dynamics is stochastic

So far, I have considered the state of the individual to be

one dimensional, namely a reversible size measure, such

as mass of energy reserves. However, much recent work

considered the overall size or mass of an individual, to be

divided into reversible (e.g. reserves) and irreversible

(e.g. structural) components (e.g. Persson et al., 1998;

Kooijman et al., 1999; Muller & Nisbet, 2000; Lika &

1256 I . F IL IN

ª 2 0 0 9 T H E A U T H O R . J . E V O L . B I O L . 2 2 ( 2 0 0 9 ) 1 2 5 2 – 1 2 6 7

J O U R N A L C O M P I L A T I O N ª 2 0 0 9 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



Kooijman, 2003; Gurney & Nisbet, 2004; van der Meer,

2006). For example, in Kooijman’s (2000) dynamic

energy budget (DEB) framework, an individual’s state

is described by its energy reserves (reversible component

of mass) and by its structural volume (which grows

irreversibly). Next, I consider optimal irreversible struc-

tural growth when the energy reserves budget is

stochastic.

I denote structural mass by z(t) and reserves mass by

y(t). So total mass is given by z(t) + y(t). At this point, I do

not commit to any specific functional forms of mean

growth rate g(y,z), growth variance r2(y,z), and mortality

l(y, z). The maximum process is now defined with

respect to total mass, i.e.

hðtÞ ¼ max
t0�s�t

½yðsÞ þ zðsÞ� ð11Þ

So h(t) is the maximal total mass that an individual have

reached up to time t. I note that both h(t) and z(t) can

only increase over time; never decrease, whereas y(t) is

free to either increase or decrease. Because y(t) represents

reserves mass, when it drops to a level a, the individual

dies of starvation. In the following, I set a = 0, i.e. the

organism dies only after exhausting all of its energy

reserves. A model with a > 0 can just as easily be

formulated (see previous sections), for example, if some

physiological constraint prevents full utilization of

reserves.

My model will be an ‘assimilation model’ (see Kooij-

man, 2000, p. 365), i.e. assimilated energy and mass is

added to reserves, and reserves are then used to fuel

metabolic maintenance and structural growth, as well as

providing the building materials for the latter. The

growth coefficients of the reserves, g(y, z) and r2(y, z),

already summarize both assimilation and metabolic

maintenance costs, paid directly by the reserves. In

addition, any growth of the structural mass z (e.g. of

feeding or defensive structures) is on the expense of

reserves y, and not directly from assimilates. An incre-

ment dz of structural mass is built by consuming

(1 + a)dz mass units of reserves, where a is a non-

negative constant parameter representing ‘overhead

costs’ of building structural mass.

Structural mass z(t) grows irreversibly, and thus, like

h(t), can only increase over time. Moreover, starvation

experiments have demonstrated that once feeding is

resumed, the original energetic state of individuals is first

regained, before any additional structural growth takes

place (e.g. Perrin et al., 1990; Kooijman, 2000; Johnsson

& Bohlin, 2006). Especially in insects, developmental

transitions (moulting and metamorphosis) are dependent

upon reaching some critical size thresholds (Nijhout,

2003; Mirth & Riddiford, 2007). Similar developmental

thresholds also occur in amphibians. Such thresholds

have been advocated as an important (but often missing)

component for theories of life history (Day & Rowe,

2002). These observations suggest that the structural

growth is associated with attainment of new total mass

maxima, i.e. with an increase in the value of h(t). For

example, after a starvation period, the individual must

exceed the previously attained maximum (prior to

starvation; most likely, the mass at which starvation

began, if individuals were initially fed ad libitum), before

structural growth can resume.

I shall, thus, connect structural growth with the

maximum process of total mass, and assert that structural

mass is a nondecreasing function of h, i.e., z = z(h), or

z(t) = z[h(t)]. Whenever the organism reaches a new

maximum of total mass, there can be structural growth

associated with this attainment of a new maximum.

Moreover, between consecutive increases of the maxi-

mum mass, i.e. during periods when h(t) remains

constant, only reserves mass y(t) can change over time.

The reserves dynamics is then described by a diffusion

process with g(y, z) and r2(y, z) obtained by keeping z

constant at z = z(h).

During such periods of no increase in h, and for a given

value of h, reserves mass y(t) is constrained to vary

between 0 and ymax(h, z) = h ) z. Therefore, as structural

mass increases (for a given value of h), reserves mass

tends to have lower values; thus, starvation risk increases

as well. On the other hand, a larger structural mass (for a

given value of h) may translate to higher mean growth

rates of reserves or lower mortality rates, thus decreasing

starvation risk and ⁄ or exogenous hazards. Additionally,

reserves mass itself (y) may affect growth rates (g and ⁄ or

r2) or mortality risk (l). For example, a ‘fatter’ individual

may be less successful in escaping predators, and reserves

mass may incur its own metabolic maintenance

costs. The problem then boils down to finding the

optimal functional form of z(h), given all the above

considerations.

I derive in (Appendix 3) the following expression for

the optimal growth curve of structural mass, z*(h)

@g
@z
� ð1þ aÞ @g

@y

� �
y¼y�maxðhÞ
z¼z�ðhÞ

¼ 0 ð12Þ

where y�maxðhÞ ¼ ymaxðh; z�½h�Þ ¼ h� z�ðhÞ: Note that g still

represents, as before, the hazard density for transitions

along the axis of reserves mass, i.e. y-axis (eqns 7–10).

However, because growth and mortality also depend on

structural mass, g is now a function of both y and z, i.e.

g = g(y, z). Equation 12 states that the optimal structural

growth z*(h) is such that the decrease in the hazard

density g(y,z) because of gain in structural mass,

i.e. (¶g ⁄ ¶z)dz, exactly compensates the increase )
(¶g ⁄ ¶y)(1 + a)dz due to the associated loss of (1 + a)dz

of reserves mass. If the function g(y, z) is known, one can

find the optimal structural growth graphically, by con-

sidering the points where contours of equal g have a

slope equal to )(1 + a) (where z is the abscissa and y is

the ordinate). Figure 3 provides some examples.
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I next consider the special class of cases where u
(= g ⁄ r2) and q (= l ⁄ g) are functions of structural mass

only (i.e. u = u[z] and q = q[z]). For these cases, it is

possible to do direct calculations using eqns 3, 4 and 9. For

the sake of graphical representations and the following

derivations, I define dimensionless variables that natu-

rally arise in the analysis of these cases (see Appendix 3)

A ¼ 2ð1þ aÞ v
2

v0
; B ¼ u0

v0
; Y ¼ 2vymax ð13Þ

where u0 = du ⁄ dz, v0 = dv ⁄ dz (v is given by eqn 4). I can

rewrite the dimensionless variable A as A = 2(1 + a) ⁄
()dv)1 ⁄ dz), where v)1 = 1 ⁄ v, as discussed previously,

determines the range of reserve mass values (above the

starvation boundary; here a = 0) in which starvation is

the predominant cause of mortality. Thus, A summarizes

considerations at low reserve mass: on the one hand, the

cost of constructing a unit of structural mass, i.e. 1 + a;

on the other hand, the benefit of structural growth in

decreasing v)1, i.e. decreasing susceptibility to starvation

mortality.

By contrast, the dimensionless variable B summarizes

considerations at high reserve mass, as it represents the

ratio of u0 and v0, where the asymptotic hazard density

(i.e. g at high values of y) changes with structural growth

according to dg¥ ⁄ dz = v0 ) u0. (For example, if v0 and u0

are both positive, i.e. both increase with structural mass z,

then the asymptotic hazard density decreases with z for

B > 1 and increases for B < 1.) Note that the overhead

cost of structural mass a appears in A but not in B (eqn

13). That is because this ‘extra’ loss of reserves due to

structural growth is significant only at small reserves

masses, where starvation poses a significant risk. Finally,

the third dimensionless variable, Y, measures the suscep-

tibility of the individual to starvation mortality, when

reserve mass is at its maximum (i.e. y = ymax). (Based on

the rule of thumb discussed previously for [v(y ) a)], if

Y > 4 the individual is far enough from the starvation

boundary such that g(ymax) � g¥, whereas if Y < 1 star-

vation mortality is very high and g(ymax)� [1 ⁄ ymax ) u].)

I then derive (Appendix) from eqn 12 the following

expression for the optimal structural growth curve, z*(h)

f ðY �Þ ¼ ½Y � � sinhðY �Þ� þ B½coshðY �Þ � 1� ¼ A ð14Þ

(Y* stands for the dimensionless value of y�max; i.e.

obtained for z*[h].) Based on eqn 14, I find the combi-

nations of A and B values, for which it is optimal to invest

in structural growth, rather than just accumulate mass in

the form of reserves. I present these in Fig. 4a as the

shaded regions in A–B parameter space (see Appendix 3

for explicit expressions). Every choice of the functions

u(z) and q(z) (and, hence, also v[z]) projects into an orbit

in the A–B parameter space. Figure 4a provides three

examples.

Figure 4 also presents some examples of optimal

growth curves z*(h), obtained for several forms of u(z)

and q(z). In Fig. 4b there is no exogenous hazard

(l = q = 0; i.e. v = |u|, and thus, B = ±1), and u increases

linearly with z from an initially negative value. Increas-

ing the overhead costs of structural growth (i.e. increas-

ing a) causes structural growth to begin later (in terms of

h), and to proceed more slowly. Additionally, increasing

the rate at which u increases with z (i.e. increasing u0)
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Fig. 3 Optimal growth curve of structural mass for different forms

of the hazard density function g(y, z). In all three panels, the thick

solid line represents the optimal growth curve ymax(z) (where

h(z) = ymax[z] + z) for a = 0, i.e. no overhead cost for building

structural mass. The thick dotted line represents optimal growth for

a = 1, i.e. it takes two mass units of reserves to build one mass unit

of structure. The thin solid lines represent contours of the function

g(y, z). The thin dotted lines represent straight lines of slope )
(1 + a) = )1 (for a = 0) that are tangent to the g(y, z) contours

at points along the optimal growth curve. (a) g monotonically

decreases with both y and z. (b) g monotonically decreases with

y but (for a given value of y) has a minimum at z = 2.01. This

minimum point serves as an asymptotic value of structural mass,

approached as h fi ¥, and never exceeded. (c) g has a minimum

point at y = 1, z = 1. However, if the individual is forced to grow in

size beyond this minimum point, then the optimal growth curve

represents simultaneous allocation to reserves and structure, along

which g increases most slowly (as h continues to grow beyond its

value at z = 1, ymax = 1).
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causes structural growth to begin earlier but again to

proceed at a slower rate. That is because as u increases

(e.g. as mean growth rate increases), starvation mortality

becomes increasingly unlikely; so, the marginal value of

spending valuable reserves on additional structural

growth decreases.

Figure 4c presents an example where u increases with

z at an accelerating rate, but at low values of z it does so

very slowly (i.e. u0 is close to zero at low values of z). In

such cases, the optimal growth curve z*(h) has two

branches. However, because z grows irreversibly, only

the upper branch (where z increases with h) is attainable.

Consequently, as in Fig. 4b, structural growth com-

mences only after some threshold reserves mass is

attained (a critical value of h is reached; denoted by hc

in Fig. 4c). However, unlike in Fig. 4b, the optimal

structural growth curve, in this case, has a discontinuity

at h = hc. That is, once enough reserves have accumu-

lated, there is rapid construction of a large structural

mass, whereas the maximum total mass is kept constant

(at h = hc). Only after this initial structural mass has been

fully built, does structural mass proceed to grow gradu-

ally with h.

Figure 4c also demonstrates that increasing the over-

head cost of constructing structural mass causes struc-

tural growth to commence later (in terms of h; i.e. hc

increases), but the initial structural mass (i.e. z[hc
+])

changes only slightly. By contrast, increasing the growth

variance of reserves (i.e. increasing r2[z] uniformly

across all values of z), both postpones structural growth

and increases the initial structural mass. Uniformly

inflating the growth variance is, in this case, equivalent

to reducing the rate at which u increases with z (compare

with the above discussion of Fig. 4b).
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Fig. 4 (a) Shaded areas (bordered by thin dotted lines) represent regions in the A–B parameter space that admit a (non-negative) solution

of eqn 14, i.e. for which it is optimal to invest in structural growth. Level of shading represents the value of Y* for a given combination of A and

B. Shading varies between Y* = 0 (black) and Y* > 3 (white). Thus, in most cases presented, there is moderate risk of starvation mortality

(as discussed in the main text regarding rule of thumb for the value of Y). In addition, the A–B orbits for three choices of the functions u(z) and

q(z) are drawn (d for all cases of in panels b and c, as well as case d in panel d; w for case w in panel d; for case in panel e). One

moves along such orbits, as structural mass, z, increases. When such an orbit leaves the shaded regions in the A–B parameter space, structural

growth stops and the individual continues only to accumulate reserves mass. Because A and B depend only on the value of z (as u and v are

functions only of z; see eqn 14), the individual gets ‘stuck’ on the last obtained values of A and B (and, thus, z), and structural growth can

never resume. (b) Optimal structural growth curves when q = 0, i.e. no exogenous hazards, and u increases linearly with size: u0 = 1.5, a = 0

(d); u0 = 1.5, a = 1 ( ); u0 = 1.5, a = 9 (w); u0 = 15, a = 0 (r). (c) u increases with z in an accelerating manner (proportional to z2): r2 = 1

(arbitrary units), a = 0 (•); r2 = 1, a = 1 ( ); r2 = 10, a = 0 (w); r2 = 10, a = 1 (r). The thin dotted lines represent branches of the optimal

growth curves that are unattainable, as z decreases with h along them. The point of growth curve discontinuity is marked by hc (marked only

for case d). (d) u increases linearly with z, a = 0, and: no exogenous mortality: q = l = 0 (d); constant mortality rate: l = 0.5 ( ); q = ± 10

(w); q = ± 0.1 (r). In the latter two cases, q is constant, up to a change of sign (because the sign of u and q must always be the same).

The thick dashed lines represent the fixed value of structural mass, maintained after structural growth ceases. (e) A foraging-enhancing trait

(u increases with z at an accelerating manner) that also incurs a cost in terms of increased susceptibility to exogenous hazards (l also

increases with z): low growth variance (d); high growth variance ( ); (f) A defensive trait (l decreases with z) that also impairs foraging

ability (u also decreases with z): low growth variance (d); high growth variance ( ).
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I note that all cases presented in Fig. 4b,c (for which

l = q = 0, and thus, v = |u|) correspond to a single orbit

in A–B parameter space (i.e. B = )1 for A < 0 and B = 1

for A > 0; the orbit marked with circles in Fig. 4a). Thus,

although describing markedly different biological scenar-

ios, the optimal structural growth curves discussed above

all collapse to the same orbit in A–B parameter space.

Moreover, the positive branch of this orbit (B = 1 for

A > 0) corresponds to u0 = v0, i.e. dg¥ ⁄ dz = v0 ) u0 = 0.

So, if minimization of the asymptotic hazard density, g¥,

serves as an optimization criterion (as suggested by

Houston et al., 1993), structural growth is no longer

optimal once u becomes positive (i.e. B becomes 1). As

this study demonstrates, using this criterion would lead

to greatly truncated nonoptimal structural growth

curves.

Figure 4d–f presents cases with exogenous hazards, i.e.

q = q(z) „ 0. Compare the orbits in A–B parameter

space of two of these cases (squares and stars in Fig. 4a)

with the simple orbit for l = q = 0 (previous paragraph;

circles in Fig. 4a). These two orbits eventually leave the

region in A–B parameter space that admits non-negative

solutions of eqn 14 (i.e. leave the shaded area in Fig. 4a).

Therefore, there is in these cases, an optimal final

structural mass, beyond which further structural growth

is not optimal. Figure 4d demonstrates that an optimal

final size exists, for example, when q is constant (i.e.

when mortality rate l increases proportionally to mean

growth rate g).

In Fig. 4e, u increases with structural mass in an

accelerating manner (as in Fig. 4c); however, mortality

rate increases as well. This is a scenario where a foraging-

enhancing structure also incurs some costs in terms of

increased mortality. In this case, there is a nonzero initial

structural mass, which is built once h exceeds hc, as in

Fig. 4c. However, unlike in Fig. 4c, there is also a final

structural mass, i.e. structural growth eventually ceases,

to avoid high mortality rates. Figure 4f describes the

optimal growth of a defensive structure that not only

reduces mortality rate but also impairs foraging ability

(decreases u). Note that, the effect of increasing the

growth variance (of reserves) is opposite in Fig. 4e,f, i.e.

final size decreases in Fig. 4e but increases in Fig. 4f.

Discussion

As McNamara et al. (2001) pointed out, ‘when the

animal makes repeated decisions, its level of reserves

can be modelled as a diffusion process, with the decisions

controlling the mean and variance of this process’. In this

study, I developed a diffusion-based model that serves as

a framework for investigating optimal growth and life

history, with stochastically varying individual state. The

strength of the approach is in providing general analytical

expressions, thus complementing other, more com-

puter ⁄ simulation-based, approaches to stochastic indi-

vidual-based modelling in evolutionary biology and

population dynamics. Different functional forms can

then be substituted in the general expressions, in order

to study specific cases (as demonstrated in Figs 1–4).

Next, I summarize the findings of this paper, and

compare them with those of previous studies. I then

outline some additional interesting topics in life-history

evolution and population dynamics that can be explored

using my model.

I determined survival to a final size, as a function of

initial size (eqn 1), using two ratios: u = mean growth

rate over growth variance, and q = hazard rate over

mean growth rate. Size-dependent survival does not

depend on these three quantities directly, but only

through the ratios u and q. I identified u as a measure

of how deterministic the growth process is (e.g. when

u = 0, growth resembles Brownian motion). I identified

q with Gilliam’s l ⁄ g criterion for optimal size-dependent

life-history decisions (e.g. optimal size at metamorphosis;

Werner & Gilliam, 1984). However, minimization of q is

not the proper optimization criterion when growth is

stochastic (Houston et al., 1993; Houston & McNamara,

1999, p. 122), because it does not account for the risk of

starvation.

For the purpose of finding an optimization criterion,

when growth is stochastic, I defined the hazard density,

which is mortality per unit of increase in size, and

determined its size dependence (eqns 7–9). As size

approaches the starvation boundary, the hazard density

tends to infinity, because of starvation mortality. As size

grows away from the starvation boundary, the hazard

density tends to fall below q (the value of the hazard

density when growth is deterministic). Thus, stochastic-

ity in growth tends, at large sizes, to decrease the

mortality per unit of size, a conclusion also reached by

Houston et al. (1993).

I found that, in some situations, optimal size-depen-

dent life history maximizes survival to some final size by

maximizing u at small sizes, where starvation risk

dominates, and minimizing it at larger sizes, where

exogenous hazards are the more important mortality

factor. As a special case of this rule, I derived Merad &

McNamara’s (1994) result, regarding minimization of

growth variance at small sizes (or low energy reserves)

and maximization of variance at large sizes. In the most

general case, I use eqns 9 and 10 to derive the optimal

control (see examples in Fig. 2).

Finally, I derive the optimal growth curve for an

irreversibly growing trait (e.g. structural volume or mass;

sensu Kooijman, 2000), when energy reserves grow

stochastically (and reversibly). I assert, based on obser-

vational and experimental evidence, that structural

growth is associated with attainment of new total size

maxima. I find an expression for the optimal investment

of accumulated reserves into structural growth, given

both exogenous hazards and risk of starvation (eqn 12).

Conclusions that arise from examining specific cases

(Fig. 4) are: (1) there is usually an initial delay in the
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growth of a structural trait, because at small sizes,

reserves are more important, in order to avoid starvation.

(2) Depending on its function, there may also be an

initial discontinuity in the growth of a structural trait.

That is, once the individual has accumulated enough

reserves to begin optimally investing in structural

growth, it should initially build a relatively large struc-

ture (see Fig. 4c,e). (3) Increasing the growth variance of

reserves increases the initial delay in structural growth

and raises the initial discontinuity (e.g. Fig 4b,c). (4)

Increasing the growth variance also has a large effect on

optimal final sizes of a structure (see Fig. 4c,e,f). Inter-

estingly, it may either increase or decrease the optimal

final size of a structural trait, depending on the function

of that trait (i.e. foraging-related or defensive trait;

compare Fig. 4e with Fig. 4f).

I note that Clark & Mangel (2000, pp. 61–67)

presented a dynamic state variable model that also

includes dynamics of both reserves and structural mass

(the latter growing irreversibly). They used specific

functional forms for probabilities of finding food and

survival between consecutive time steps (both increasing

with structural mass). Clark and Mangel concluded that,

as food supply becomes increasingly variable, instances of

structural growth occur more rarely. Their conclusion is

partly similar to my conclusion (3) of the previous

paragraph, concerning the increased delay in structural

growth (e.g. compare with their fig. 2.3). However,

Fig. 4c,f indicates that once structural growth com-

mences, it may proceed as fast, or even faster, when

the growth variance of reserves is increased. In other

cases, increasing the growth variance indeed slows down

structural growth (e.g. compare with Fig. 4e). Therefore,

I demonstrate that the effect of increasing the variance in

growth on the rate of structural growth depends on the

specific functional forms of the structural trait depen-

dence of growth and mortality.

The above conclusions can readily be translated into

predictions for experimental and comparative studies.

For example, the effect of increased variance in growth

on optimal structural growth is particularly interesting.

Closely related species, or geographically distinct popu-

lations of the same species, may experience different

levels of noise in resource intake, growth efficiency (e.g.

due to short-term variations in food quality) or metabolic

maintenance costs. This study provides predictions on

how patterns of structural growth should vary between

such populations or species. Moreover, it may be possible

to examine in experimental settings the effect of different

levels of growth variance on the growth of reserves and

structural traits, e.g. in experiments of artificial selection

or phenotypic plasticity. The level of noise in growth

modulates the trade-off between energy gain and avoid-

ing exogenous hazards (e.g. see eqn 4), and thus,

depending on whether a structural trait is related to

foraging or defence, my model predicts different effects of

increased growth variance (e.g. Figs 4e,f).

Irie & Iwasa (2005) studied optimal shell growth in

molluscs, i.e. a purely defensive structure. Their model is

deterministic, as it does not include noise in the growth

process. An initial delay in structural growth also occurs

in their model, as the individual initially invests only in

the growth of the soft body, in order to increase

production rate. In my model, the initial delay in the

growth of a defensive structure (Fig. 4f) occurs because

initially the individual should accumulate reserves, as

insurance against starvation mortality. (In Fig. 4f I use

the same functional form for structural mass-dependent

mortality rate, as in Irie & Iwasa, 2005.)

Irie & Iwasa (2005) also discussed other modes of

defence, such as chemical defence (e.g. production of

toxins; e.g. Longson & Joss, 2006) or defensive behaviour

(e.g. increased vigilance; Brown, 1999). They noted that

their model is not applicable to such defences, because it

assumes that the effect of investment in defence is

cumulative. Unlike shells, which are irreversibly growing

defensive structures, chemical or behavioural defences

are reversible, in the sense that they can be switched on

and off without a lasting effect on the individual. In my

model, it is straightforward to incorporate such reversible

defences, together with the irreversibly growing struc-

tural ⁄ physical defence, by considering additional control

variables (affecting mean growth rate, growth variance

and mortality rate). The reversible modes of defence can

be switched on and off as reserves mass fluctuates,

resulting in optimal control that is a function of instan-

taneous reserves mass, as I studied above (e.g. Fig. 2). In

general, this optimal control will also depend on struc-

tural mass (i.e. u* = u*[y, z]). Similarly, the reversibly

changing and irreversibly growing traits can also be

related to foraging, e.g. feeding structures, growing

irreversibly and habitat preference, diet choice or forag-

ing effort, serving as reversible behavioural traits.

Energy allocation to reproduction is another behaviour

that the individual can reversibly switch on and off

depending on its nutritional state. In this work, however,

I only considered survival while growing from an initial

size (i.e. offspring size) to some final size (i.e. adult size).

In that respect, the current model aims mainly at

immature or nonreproducing individuals. Reproduction

was summarized by a terminal reward, a function of both

initial size and final size. This terminal reward function

can be used to derive optimal initial and final sizes, as

Kozlowski (1996) obtained for a deterministic life-history

model. Using my stochastic model, I can additionally

investigate how optimal offspring and adult sizes depend,

for example, on the growth variance.

In addition to an explicit treatment of reproduction,

another important component of dynamic optimization,

missing in the current model, is an explicit treatment of

time, for example, the effect of a final time horizon. This

can be incorporated, for example, by using a time penalty

(Houston et al., 1993). Another possibility is to use the

backward Kolmogorov equation (Karlin & Taylor, 1981,
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p. 216), as demonstrated by Iwasa (1991) in the context

of an environment that fluctuates stochastically over

time.

Fluctuations in the environment over time (e.g. envi-

ronmental stochasticity, in contrast to demographic

stochasticity; see below) has also been the focus of most

optimization models, concerned with simultaneous

investment in both structure and reserves (also called

storage, or storage organs; e.g. Perrin & Sibly, 1993;

Iwasa & Kubo, 1997). In such models, however, the

growth of individuals is deterministic in the sense that

there is only variability in growth rate over time, not

individual variability. That is, identical individual, having

the same state (e.g. size) at a given time, have exactly the

same growth rate.

The stochasticity in growth considered in this study,

however, is demographic. That is, ‘because of differences

in luck in obtaining food, avoiding predators, etc.’ (Hous-

ton & McNamara, 1999, p. 220). Demographic stochastic-

ity can further be divided into demographic stochasticity

proper, i.e. sampling variance in individual fate (associ-

ated with a given value of a demographic trait) and

demographic heterogeneity, i.e. individual variability in

the values of demographic traits (Kendall & Fox, 2002,

2003; Melbourne & Hastings, 2008). In this study,

randomly generated variation in growth rate among

identical individuals (i.e. growth variance) has important

effects on how survival probability varies with size, as

demonstrated by Fig. 1. This has important consequences

to population stability, as I next demonstrate.

Consider a simple scenario of no exogenous mortality

(l = q = 0) and an environment that fluctuates stochas-

tically between a positive value of mean growth rate (e.g.

a year with abundant resource) and a negative such

value (e.g. a year with scarce resource). When growth

variance is small survival probability in ‘good years’ is

close to 1, whereas in ‘bad years’ it is very low (see

Fig. 1a; compare u = 10 and )10; recall that u = g ⁄ r2).

Thus, there are large fluctuations in survival probability

among years. On the other hand, when growth variance

is high, between-year fluctuations in survival probability

are greatly reduced (compare u = 1 and )1 in Fig. 1a).

Interestingly and counter intuitively, growth variance,

although considered a component of demographic sto-

chasticity (e.g. generated because of differences in luck in

obtaining food), has a stabilizing effect on environmen-

tally driven fluctuations in population dynamics. This

stabilizing effect is different from the one attributed to

individual variation in demographic traits [e.g. (size-

related) variation in survival and fecundity; Bjørnstad &

Hansen, 1994; Grimm & Uchmanski, 2002; Filin &

Ovadia, 2007], as it occurs even in the absence of such

variation. However, a similarity still exists in the sense

that both an initial structure in the population (which can

become exaggerated with time) and randomly generated

variability in an initially homogeneous population,

increase the within-generation variability in individual

fate, but decrease the between-generation variability in

the average fate (see also Uchmanski, 2000).

In conclusion, the present paper along with many

recently published empirical and theoretical studies

emphasizes the need to document individual variability

in growth, and not only mean responses, in experimental

and field work (e.g. Pfister & Stevens, 2002; Gurney &

Veitch, 2007). In addition, it is important to distinguish

between different components of the size or mass of

individuals (e.g. reserves and structure; Kooijman, 2000).

As this work clearly demonstrates, these two aspects

of the growth of individuals have important implications

to life history and population dynamics, and need

to be better addressed both by experimentalists and

theoreticians.
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Appendix 1: Derivation of eqns 1 and 2

Survival probability to b, given starvation boundary a

(< b) and initial size y (a £ y £ b) can be written as

S(y) = u(y)P(y). The first factor in the product is

u(y) = Pr{the growth process reaches b before a}, i.e.

the probability that a sample path of the growth process

crosses level b before crossing level a, starting from y.

The second factor is P(y) = Pr{no exogenous mortality

event before reaching b, given that b is reached before

a}, i.e. the probability that a sample path is not killed

before reaching level b, prescribed to the process

confined to sample paths that reach b before a. Thus,

the expression S(y) = u(y)P(y) is a simple consequence of

the definition of conditional probability. (Note that any

exogenous mortality event, along sample paths of the

growth process that reach a before b, is irrelevant as far

as survivorship is concerned, because any individual

following this sample path is destined to die before

reaching level b, either by exogenous hazards or by

starvation.)

The growth process is a diffusion process with infinite-

simal mean and variance given by g(y) and r2(y)

respectively. The probability u(y) of reaching level b

before crossing a different level a is given for time

homogenous diffusion by

1

2
r2ðyÞ d

2u

dy2
þ gðyÞdu

dy
¼ 0 ðA1Þ

uðaÞ ¼ 0; uðbÞ ¼ 1 ðA2Þ

(Karlin & Taylor, 1981, pp. 192–193). u(y) is in fact a scale

function of the (growth) diffusion process (Karlin &

Taylor, 1981, pp. 194–196).

The second probability P(y) is given by the Kac

functional (eqns 3.41 and 3.42 in Karlin & Taylor, 1981,

p. 204). However, because I confine myself in this

calculation only to those sample paths (of the growth

process) that reach b before a, I must use the respective

conditioned diffusion process in obtaining an expression

for P(y). All sample paths of the growth process that reach

b before a describe a new (conditioned) diffusion process

with the following infinitesimal mean and variance

g�ðyÞ ¼ gðyÞ þ u0ðyÞ
uðyÞ r2ðyÞ ðA3Þ

r2�ðyÞ ¼ r2ðyÞ ðA4Þ

(Karlin & Taylor, 1981, pp. 261–264). With the addition

of the exogenous hazard (killing) rate, l(y), I obtain the

following expression for the probability P(y)

1

2
r2�ðyÞd

2P

dy2
þ g�ðyÞ dP

dy
� lðyÞP ¼ 0 ðA5Þ

PðaÞ ¼ 1; PðbÞ ¼ 1 ðA6Þ

(Karlin & Taylor, 1981, p. 204). Note that although

P(a) = 1 is a boundary condition of eqn A5, the state

y = a becomes an entrance boundary, and thus unat-

tainable from within the interval (a, b], for the condi-

tioned diffusion. So, the conditioned process can only

display absorption at b; see Karlin & Taylor, 1981, pp.

226–250 and 263–264).

The total survival probability to b, given the original

diffusion process is S(y) = u(y)P(y) = Pr{reaching b before

a}Pr{the conditioned process is not killed before reaching

b}. Combining eqns A1–A6, I obtain z

1

2
r2ðyÞu d2P

dy2
þ ½gðyÞuþ r2ðyÞu0� dP

dy
� lðyÞuP

þ P
1

2
r2ðyÞ d

2u

dy2
þ gðyÞdu

dy

� �
¼ 0

SðaÞ ¼ uðaÞPðaÞ ¼ 0; SðbÞ ¼ uðbÞPðbÞ ¼ 1 ðA7Þ

Rewriting eqn A7 as

1

2
r2ðyÞðuP00 þ 2u0P0 þ u00PÞ þ gðyÞðu0 þ uP0Þ � lðyÞuP ¼ 0

and dividing by r2 ⁄ 2, I finally obtain eqns 1 and 2.

Appendix 2: Survival to size, the maximum
process of growth, and the hazard density

As a useful illustration, consider a cohort of identical

individuals all starting at an initial size y0 at time t0, but

diverging in subsequent growth trajectories. Individual i

has failure time (i.e. time of death) given by Ti and, thus,

size at death Yi = y(Ti). By definition, S(t0, t) = Pr{Ti > t}

(Kalbfleisch & Prentice, 2002, ch. 1). However, can I

analogously define S(y0, b) as Pr{Yi > b}? Next, I demon-

strate that such a definition is problematic and suggest an

alternative definition.

First, although an individual never exceeds Ti during

its lifetime, it may exceed Yi if it grows to a larger size

before eventually decreasing to Yi. Second, consider

two individuals, both starting at y0 and dying at size y1

(i.e. Yi = y1 for both). Although one individual grows

monotonically from y0 to y1, where it eventually dies,

the second individual passes through y2 > y1. Naturally,

I would claim that the second individual contributes to

survival S(y0, y2) from initial size y0 to subsequent size

y2, even though later its size decreases below y2, but

not so in the first individual that never reaches y2

during its lifetime. However, if I define S(y0, y2) =

Pr{Yi > y2}, both individuals do not contribute to

survival to size y2.
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I can fix the definition of S(y0, b), by defining the

maximum process

hðtÞ ¼ max
t0�s�t

yðsÞ

(see eqn 6 in the main text). If I now define

Sðy0; bÞ ¼ PrfhðTÞ � bjyðt0Þ ¼ y0g

(seeeqn 5 in the main text) I observe that the two

problems presented in the previous paragraph no

longer plague this definition. First, h(t) cannot decrease

over time (unlike y[t]). Second, our two hypothetical

individuals are now distinguishable based on

their final values of the maximum process:

h(T1) = y1 < y2 £ h(T2).

Because a hazard function is an alternative represen-

tation of a survivorship function (Kalbfleisch & Prentice,

2002, p. 7), I can define a hazard function for survival to

size S(y0, b) in a manner analogous to the hazard rate,

which is the hazard function of survival to time. Thus,

Sðy0; bÞ ¼ PrfhðTiÞ � bg ¼ exp �
Z b

y0

gðyÞdy

� �

(see eqn 7 in the main text) where g(y) is the hazard

density, i.e. the hazard function of S(y0, b). Similarly to

the hazard rate, g(b)db is the increment in mortality as I

slightly raise the survival threshold from b to b + db,

taking into account all the possible different growth

trajectories that reach b but do not reach b + db, i.e. S(y0,

b + db) � S(y0, b)[1 ) g(b)db]. Similarly, S(y0, b) �
S(y0 + dy0, b)[1 ) g(y0)dy0]. When growth is determinis-

tic g(y) = l(y) ⁄ g(y) = q(y).

When growth is described by a diffusion process, I

obtain from eqn 1

S
d2 ln S

dy2
þ d ln S

dy

� �2

þ2uðyÞd ln S

dy
� 2uðyÞqðyÞ

" #
¼ 0

and given that g(y) = ¶ ln S(y,b) ⁄ ¶y (eqn 7), and b is a

constant parameter representing final size, I obtain eqn 8.

Appendix 3: Optimal irreversible
structural growth

My criterion for optimality would be maximizing survival

from initial total mass hI = zI + yI to final total mass hF,

i.e. S(h0, hF). As before, S = exp()L), where

KðhI; hFÞ ¼
Z hF

hI

hðhÞdh

is the cumulative hazard. However, note that now the

hazard density, denoted here by h, is a function of the

maximum of total mass process, h (eqn 11). In the

following, h(h) refers to the hazard density for transitions

from one value of h to a higher value of h, whereas g(y),

as before, refers to transitions along the axis of reserves

mass, i.e. y-axis (see eqns 7–10). In general, both may

also depend on the value of the structural mass z. So I can

also denote these hazard densities by h(h, z) and g(y, z)

respectively.

Thus, survival probability from total mass h to total

mass h + dh (where dh is sufficiently small) is given by

S(h, h + dh) = 1 ) h(h)dh +o([dh]2). I wish to find an

expression for h(h), given the specification of mortality

and growth (of both y and z) in the main text.

Given a value of h and its corresponding value of

z = z[h], reversible mass y changes according to a

diffusion process with g = g(z, y) and r2 = r2(z, y). As

long as y(t) remains within the interval (0, ymax(h, z)]

(where ymax[h, z] = h ) z), the individual does not

starve to death, and there is also no additional

structural growth. However, once y(t) exceeds ymax, a

new maximum total mass h is obtained and structural

mass z may also increase. Let us assert that structural

growth occurs only at evenly spaced points along the

h-axis, with intervals of size dh. That is, if the last

structural growth increment occurred at h(t1) = h1,

then z will remain unchanged at least until

h(t2) = h2 = h1 + dh, where the next structural growth

increment may occur. The next structural growth after

t2 occurs at h(t3) = h3 = h2 + dh = h1 + 2 dh, and so

forth.

Immediately before t2, I have:

yðt�2 Þ ¼ h2� zðh1Þ ¼ ymaxðh1; z½h1�Þþdh and zðt�2 Þ ¼ zðh1Þ:

Immediately after t2, I have:

yðtþ2 Þ ¼ y0ðh2Þ and zðtþ2 Þ ¼ zðh2Þ ¼ zðh2Þ þ dz;

where y0(h) represents the initial amount of reserves

immediately after a structural growth increment

occurred, given the value of h. If growth increments

occur at small enough intervals (i.e. dh is small),

then dz = (dz ⁄ dh)|h dh + o([dh]2), where the derivative

(dz ⁄ dh)|h is evaluated at h = h1.

Given this formulation, I can derive the following

expression for survival from h to h + dh

Sðh; hþ dhÞ ¼ Sðy ¼ y0½h�; y ¼ ymax½h; zðhÞ� þ dhÞ
or given S = exp()L)

Kðh;hþdhÞ¼�lnSðy¼y0½h�;y¼ymax½h;zðhÞ�þdhÞ ðA8Þ

The initial amount of reserves immediately after a

structural growth increment, y0(h), can be found if I

consider that in order to produce mass dz of structure one

requires (1 + a)dz of reserves. Therefore y0(h) = ymax(h,

z[h]) ) a dz (where the 1 in (1 + a) is already absorbed in

ymax). Thus, eqn A8 can now take the form

Kðh; hþ dhÞ ¼ � ln Sðy ¼ ymax½h; zðhÞ� � a dz; y

¼ ymax½h; zðhÞ� þ dhÞ

and finally I obtain (when taking the limit dh fi 0)
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hðhÞ ¼ gðy ¼ ymax½h; zðhÞ�Þ 1þ a
dz

dh

����
h

� �
ðA9Þ

Notice that the hazard density for transitions along the

h-axis (eqn A9) is inflated by the rate of structural growth

(dz ⁄ dh), if there are overhead costs for building structural

mass (i.e. if a > 0). That is because after each increment

of structural growth, the individual needs to spend extra

time in regaining reserves mass, before any additional

structural growth may occur.

Once I obtained an expression for h(h) I wish to find

the optimal functional form of z(h). For that purpose, I

use the Pontryagin’s maximum principle. My state

variable is z, and let u denote the control variable:

u = dz ⁄ dh. Then, the Hamiltonian is given by H = )
h + ukz (the minus sign in front of h is because I wish to

maximize survival or, equivalently, minimize the cumu-

lative hazard L), i.e.

H ¼ �gðymax½h; z�Þð1þ auÞ þ kzu

where kz is the co-state variable of z. The switching

function for investing in structural mass is given by

S = ¶H ⁄ ¶u, or

R ¼ �agðymax½h; z�Þ þ kz :

When S = 0, I obtain singular control, which should

provide us with an expression for the optimal growth

curve z*(h). A singular control additionally requires

dS ⁄ dh = 0, which results in the following condition

(given dkz ⁄ dh = )¶H ⁄ ¶z)

dR
dh
¼ @

@z
� a

@

@h

� �
gðymax½h; z�Þ ¼ 0 ðA10Þ

which is identical to eqn 12. (Recall that g[ymax] = g[y, z]

for y = h ) z. So, given the values of h and z,

@g½ymax�=@h ¼ @g½y; z�=@y and @g½ymax�=@z

¼ �@g½y; z�=@yþ @g½y; z�=@z;

all evaluated at z and y = ymax = h ) z.)

Hereafter, I shall only refer to the special case of u and

q independent of y, i.e. g is given by eqn 9, where u and v
are functions of z. Equation 12 then becomes

v0 cothðvymaxÞ � vv0ymax cosech2ðvymaxÞ � u0

þ ð1þ aÞv2 cosech2ðvymaxÞ ¼ 0

where u0 = du ⁄ dz, v0 = dv ⁄ dz. Multiplying by )2 sinh2

(vymax) I obtain

v0½ð2vymaxÞ � sinhð2vymaxÞ� þ u0½coshð2vymaxÞ�1�
¼ 2ð1þ aÞv2

and from this eqn 14 is obtained by using expressions 13

for A, B and Y. Note that f[Y] in eqn 14 is the sum of an

odd function and an even function.

Using eqn 14, and the definitions for the dimensionless

variables (eqn 13), I find that a singular control solution

Y* > 0 exists if:

(a) A > 0 (i.e. v > 0 and v0 > 0) and B ‡ 1;

(b) A < 0 (i.e. v > 0 and v0 < 0) and B < 1;

(c) 0 < B < 1 and 0 < A < [ln(1 + B) ) ln(1 ) B) ) 2B].

(Note that in this case, eqn 14 admits two positive

solutions of Y*. However, only the smaller one is optimal.

I conclude that using the second-order condition for the

local maximality of singular control; see below).

Additionally:

(d) if A = 0 (i.e. v = 0), then y�max ¼ h� z�ðhÞ ¼ ½ð1þ aÞ=
u0�1=2;

(e) if v0 = 0, then Y � ¼ a coshð1þ A=BÞ ¼ a coshf1þ
½2ð1þ aÞv2=u0�g:

In both (d) and (e) a singular control solution exists

only if u0 > 0. These can be rewritten in terms of the

forms of the functions v(z) and u(z):

(I) v > 0 and u0 > v0 [from (a), (b) and (e)]; or

(II) v > 0 and u0 = v0 > 0 [from (a)]; or

(III) v = 0 and u0 > 0 [from (d)]; or

(IV) v0 > u0 > 0 (i.e. 0 < B < 1) and 0 < A < [ln(1 + B) )
ln(1 ) B) ) 2B] [from (c)].

The second-order condition for the local maximality of

singular control is given by

@

@u

d2

dh2

� �
@H

@u
> 0

(e.g. Iwasa & Roughgarden, 1984; eqn 18 therein). By

substituting S = ¶H ⁄ ¶u, and using eqn A10 I can obtain

from this condition the following one:

@

@z

dR
dh

� �
> 0

By noticing that for singular control d2R=dh2 ¼ ½@=@hþ
u @=@z�ðdR=dhÞ ¼ 0 and u > 0, I now obtain the following

inequality

@

@h
dR
dh

� �
< 0

And finally, for the case of u and q dependent only on z, I

obtain the condition

v0v cosech2 1

2
Y �

� �
f 0ðY �Þ > 0 ðA11Þ

for local maximality of the singular control described by

eqn 14.

Condition (A11) can be summarized as follows:

(i) f 0(Y*) > 0 for A > 0 (i.e. for v > 0 and v0 > 0),

(ii) f 0(Y*) < 0 for A < 0 (i.e. for v > 0 and v0 < 0),

(iii) u0 > 0 for v = 0 and ⁄ or v0 = 0).

In conjunction with conditions (a)–(e) for the exis-

tence of a singular control, I finally conclude that

whenever a singular control exists it is optimal.
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Condition A11 also helps to determine that in case (c),

which admits two solutions of eqn 14, it is only the

smaller solution that is optimal. I note that case (c) also

admits a singular control solution Y* > 0 when

A = [ln(1 + B) ) ln(1 ) B) ) 2B]. However, condition

(i) is not satisfied in this case. Finally, if the initial

structural mass zI and reserves mass yI lie outside the

singular control curve (eqn 12), then the switching

function S is not zero, and the individual should grow in

such a manner to eventually hit the singular control

curve, and proceed along it.

If S < 0 the optimal strategy is u*(h) = 0, i.e. no

investment in structural mass as total mass h increases.

This case corresponds to initial reserves below the level

prescribed by the singular control for a given value of

structural mass zI. In this case, the individual only

accumulates reserves. Conversely, when S > 0 the

Hamiltonian is maximized by having u*(h) = dz ⁄ dh = +¥,

that is an initial step in z(h). This case corresponds to an

initial structural mass below that prescribed by the

singular control for the value of hI (=zI + yI). Thus, there

is a transient phase where structural mass grows without

increasing total mass (i.e. h(t) = hI), until the singular

control curve is hit at the point (hI, z*[hI]). (in h–z space;

as in Fig. 4b–f).
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