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a b s t r a c t

I extend my previous work on life history optimization when body mass is divided into reserves and

structure components. Two important innovations are: (1) effect of finite target size on optimal

structural growth; (2) incorporating reproduction in the optimization objective. I derive optimal growth

trajectories and life histories, given that the individual is subject to both starvation mortality and

exogenous hazards (e.g., predation). Because of overhead costs in building structural mass, it is optimal

to stop structural growth close to the target size, and to proceed only by accumulating reserves. Higher

overhead costs cause earlier cessation of structural growth and smaller final structures. Semelparous

reproduction also promotes early cessation of structural growth, compared to when only survival to

target size is maximized. In contrast, iteroparous reproduction can prolong structural growth, resulting

in larger final structures than in either the survival or the semelparous scenarios. Increasing the noise in

individual growth lowers final structural mass at small target sizes, but the effect is reversed for large

target sizes. My results provide predictions for comparative studies. I outline important consequences

of my results to additional important evolutionary questions: evolution of sexual dimorphism,

optimization of clutch size and evolution of progeny and adult sizes.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Life history and developmental transitions often require the
attainment of some target size. For example, ‘‘in a variety of
animals and plant species adult size appears to be determined by
a size threshold for maturation’’ (Roff, 2002, p. 201). Develop-
mental transitions in insects and amphibians are dependent upon
reaching some critical size (Day and Rowe, 2002; Nijhout, 2003;
Mirth and Riddiford, 2007). More generally, such thresholds play a
key role in recent approaches to developmental plasticity and
phenotypic evolution (West-Eberhard, 2003).

Thus, target size is an important life history variable, and
should affect optimal life history decisions during growth and
development of an individual (e.g., Day and Rowe, 2002). In this
paper, I study the effect of a given finite target size on optimal life
history, when individual growth is stochastic. I employ a dynamic
optimization approach (e.g., Perrin and Sibly, 1993; Iwasa, 2000;
Irie and Iwasa, 2005), and extend my previous work (Filin, 2009),
by considering not only survival, but also reproduction, as part of
the optimization objective.

Following much recent work on size-structured populations
and individual growth (e.g., Persson et al., 1998; Kooijman, 2000;
ll rights reserved.
Gurney and Nisbet, 2004; Filin, 2009), I divide the total body mass
of an individual into a reversibly growing component (hereafter,
reserves) and an irreversible component (hereafter, structure).
The mass of reserves varies stochastically in time, for example,
because of fluctuations in consumption, assimilation and meta-
bolic maintenance. I explore how costs of structural growth, noise
level in reserves dynamics, and mode of reproduction (e.g.,
semelparous or iteroparous), all affect optimal investment in
structure versus reserves, when the individual is subject to both
starvation risk and exogenous mortality. Finally, I discuss how my
model and results can be easily applied to a wealth of additional
evolutionary problems: evolution of sexual dimorphism, optimal
clutch size, and optimal progeny and adult sizes.
2. Effect of target size on life history optimization

2.1. Basic formulations

I denote structural mass by z(t) and reserves mass by y(t). Total
body mass is then z(t)+y(t). I define the time-varying maximum of
total body mass

yðtÞ ¼ max
t0 rtr t

½yðtÞþzðtÞ� ð1Þ

i.e., the maximal total mass reached up to time t. (Below, I
interchangeably refer to y as total body mass, total mass, or body
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mass.) Both y(t) and z(t) grow irreversibly, i.e., can only increase
through time, while y(t) is free to either increase or decrease.
Because y represents reserves mass, when y(t) drops to a level a

(the starvation boundary), the individual dies of starvation.
Throughout the rest of this paper I set the starvation boundary
to zero (i.e., a=0), to avoid unnecessarily cumbersome notation,
and because a nonzero starvation boundary results in only minor
modifications (if any) to the expressions presented below (see
Appendix B), and does not qualitatively change the general
conclusions. Therefore, an individual dies of starvation only after
exhausting all of its reserves (i.e., when y[t] hits zero).

Following Filin (2009), structural growth occurs only each time
a new body mass threshold is reached. In mathematical guise, the
irreversibly growing structural mass z is a non-decreasing
function of y, i.e., z(t)=z[y(t)]. Whenever the organism reaches a
new maximum of total mass (i.e., a new, higher value of y), there
can be structural growth associated with this crossing of a new
body mass threshold. In addition, structural growth always occurs
on the expense of reserves y. A unit of structural mass is built by
consuming 1+a units of reserves mass. The dimensionless
parameter a represents overhead costs of building structural mass.

In between events of structural growth (while y[t] and thus z[t]
remain unchanged), the dynamics of reserves y(t) is described by
a diffusion process on the interval [0, y�z]. This diffusion process
is characterized by g(y, z) (the mean growth rate) and by s2(y, z)
(the growth variance) representing, respectively, the mean balance
of input (e.g., assimilation) and output (e.g., metabolic main-
tenance) fluxes of energy and mass, and the random fluctuations
around this mean balance. In general, both mean growth rate g

and growth variance s2 are dependent on both reserves mass y

and structural mass z (but see following sections). (The units of g

are that of [mass/time], while the units of s2 are that of [mass2/
time].)

In addition to starvation mortality (if y[t] hits the starvation
boundary), the individual is subject to various exogenous hazards
(e.g., predation and disease). These are captured by the mortality
or hazard rate m(y, z). Survival probability from initial reserves
mass y1 to final reserves mass y2 (Zy1), while keeping z fixed, is
given by

Syðy1; y2Þ ¼ exp �

Z y2

y1

Zðy; zÞdy

� �
ð2Þ

where Z(y, z) is the hazard density, the hazard function for
survivorship through transitions in the value of reserves mass
(i.e., along the y-axis, from a lower value of reserves y1 to a higher
value y2). The hazard density Z describes mortality per unit of
gain in mass (analogously, mortality rate m, describes mortality
per unit of time, i.e., along the time axis), and encapsulates within
it both starvation mortality and exogenous mortality.

In the following, initial body mass of an individual will be
denoted by y0 and target body mass by y2 (y1 will denote the size
at which structural growth ceases; see below). Survival prob-
ability from initial total mass y0 to final total mass y2, when
structural mass grows according to z=z(y), is given by

Syðy0; y2Þ ¼ exp �

Z y2

y0

Zðy�z; zÞð1þa_zÞdy
 !

ð3Þ

(Filin, 2009), where _z stands for @z/@y (hereafter, the dot sign will
always stand for derivative with respect to y). Note that the
hazard function for transitions in total mass (i.e., along the y-axis;
the integrand in Eq. (3)) is inflated by a factor ð1þa_zÞ, dependent
on rate and overhead costs of structural growth.

Finally, the optimization problem consists of finding the
optimal form of the structural growth curve, z*(y), that maximizes
the following objective function

logFðy0; y2Þ ¼ �

Z y2

y0

Zðy�z; zÞð1þa_zÞdyþ logRðy2; z2Þ ð4Þ

i.e., fitness is given by F=SyR, namely, survival probability to target
size multiplied by a terminal reward obtained at that size. The
terminal reward R (e.g., Houston and McNamara, 1999, ch. 3; also
known as final function; Perrin and Sibly, 1993, appendix therein)
depends on target size y2 and on structural mass z2 obtained at
this target size.

The state variable in this optimization problem is z, with which
a costate variable is associated, denoted by l. The value of the
costate variable at each body mass y between y0 and y2 (i.e., l[y]),
quantifies the benefit of investing in structural growth, compared
to just accumulating reserves. For analyzing the effect of target
size on the optimal structural growth curve, z*(y), I require the
boundary condition for the value of l at the target size y2

lðy2Þ ¼
@ log R

@z2
ð5Þ

(Appendix A).
In the following sections I derive the optimal structural growth

curve for several forms of the objective (fitness) function (Eq. (4);
more precisely, for several forms of the terminal reward R). First, I
consider maximization of survival probability to target size
(Eq. (3)). This is also the optimization objective in Filin (2009).
Later, I extend the analysis to consider objective functions that
include reproduction.

2.2. Maximizing survival probability to target size: optimal cessation

of structural growth due to overhead costs

When maximizing survival probability to final size the
terminal reward function in Eq. (4) is R=1. The boundary
condition for l (Eq. (5)) then becomes l(y2)=0. I have previously
studied optimal structural growth for this case (Filin, 2009;
Eq. (12) therein). However, in that study I did not consider the
possible effect of a finite target size on the optimal structural
growth curve z*(y) (in effect, y2 is taken to be infinite in Filin,
2009).

Filin (2009) showed that when nonzero structural growth
occurs (i.e., _z40), z*(y) follows a singular arc (a term borrowed
from dynamic optimization theory; e.g., Perrin and Sibly, 1993).
Along singular arcs the costate variable l and the structural mass
z satisfy the condition l(y)=aZ(y�z, z) (Appendix A). However,
because l(y2)=0, this condition can never be satisfied at the target
size, unless there are no overhead costs of building structural
mass (i.e., if a=0; Z is always positive, unless growth is completely
deterministic, i.e., s2=0, and there are no exogenous hazards, i.e.,
m=0). Therefore, the pair (y2, z2) (where z2=z*[y2]) never lies on a
singular arc, unless a=0. I conclude that, for finite target size y2

and nonzero overhead costs of structural growth (a40), the
optimal structural growth curve z*(y) always ends with a plateau,
along which structural mass remains constant (z*[y]=z2), and only
reserves grow.

As we consider increasingly lower body masses below y2, l(y)
may gradually increase from its boundary value l(y2)=0 until the
condition l(y)=aZ(y�z, z) is finally satisfied at some body mass,
denoted by y1 (ry2; the equality may hold only if a=0). At that
point, the optimal growth curve connects with a singular arc,
and as we proceed backwards towards even lower values of y
(i.e., yoy1), the optimal growth curve exhibits positive structural
growth (_z�40). The overall pattern of optimal structural growth
is to grow along the singular arc until y1, and then proceed to the
target size y2, by switching to only accumulating reserves.
Therefore, y1 is termed switching size.
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Fig. 1. (a) Switching curves (thick lines) and sample growth trajectories (thin lines) given: the standard specific model, described below (a=1; solid lines);a is increased to

3 (dotted lines); growth variance r2 is uniformly reduced by a factor of 10 (dashed lines). The optimization objective is survival to target size (i.e., no reproduction). In the

uppermost sample growth trajectory I marked the points representing (from left to right) the initial, switching and target sizes. The other three sample trajectories all

emanate from the same initial point. However, because of differences in a or r2 both the growth path and the switching size are different. When overhead costs of

structural growth (i.e., a) are increased the switching curve becomes lower, but the rate of structural growth is only slightly reduced, causing smaller final structural mass

and earlier cessation of structural growth (compare solid with dotted lines). When noise in individual growth is reduced (i.e., r2 is reduced), the switching curve is higher

for small target sizes, but lower for large target sizes (compare solid and dashed curves). Because a reduced growth variance strongly affects the rate of structural growth,

cessation of structural growth occurs earlier, but at higher final structural mass. (b) Switching curves and sample growth trajectories for the standard specific model

(below), given: no reproduction (solid lines), semelparous reproduction (dotted lines), iteroparous reproduction (dashed lines; y3=4). Because in all three cases the values

and functional forms of the model parameters are identical (see below), the growth paths are identical (given the same initial condition). The only variation is that

structural growth ceases at different body masses (i.e., switching sizes) according to the mode of reproduction. The examples provided in both panels have been obtained

using the following standard specific model: g=3[z2/3
�(2/3)z], r2=4(0.1z2/3+0.9z), l=0.2, and a=1. The motivation for these specific expressions follows from the work of

Kooijman (2000, ch.3), where z here is comparable to Kooijman’s structural volume. The mean growth rate g is the difference between assimilation, proportional to surface

area, and maintenance, proportional to volume. Time and size were rescaled such that maximum mean growth rate is g=1, and it occurs at z=1. The growth variance r2 is

the sum of noise in assimilation (again proportional to surface area) and noise in maintenance (proportional to structural mass; e.g., representing independent fluctuations

in metabolism among cells). Mortality rate is taken to be constant, independent of structural mass (but see online Figs. 2 and 3 in the supplementary material for examples

with size-dependent mortality).
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The switching size, in turn, determines the optimal final
structural mass achieved by the growing individual, because
z2=z*(y2)=z*(y1) (and the latter is determined by the singular arc).
Both y1 and z2 will change as target size y2 varies. I can therefore
obtain a switching curve z2(y2) that determines the value of the
optimal final structural mass as a function of target size. Fig. 1a
provides specific examples of such switching curves and optimal
structural growth curves for different target sizes. It is important
to note that, in general, the singular arc is also defined for values
of y above the switching size y1 (diamonds in Fig. 1a). However,
given a finite target size, it is optimal to abandon the singular arc
once structural mass has hit the switching curve (i.e., at the
switching size).

When reserves growth and exogenous mortality depend only
on structural mass (i.e., g, s2 and m are functions of z only), Filin
(2009) provides the following expression for the hazard density

Zðy; zÞ ¼ w cothðwyÞ�j ð6Þ

where

w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

s4
þ

2m
s2

r
; j¼ g

s2
ð7Þ

are both functions of structural mass z (i.e., w=w[z] and j=j[z]).
The quantity w combines both starvation risk (decreasing with g

and increasing with s2) and exogenous hazards (increasing with
m), to determine the range of values of reserves mass in which
starvation is the predominant cause of mortality (as opposed to
exogenous hazards). (This range can be described by the interval
[0, w�1].) The quantity j measures how stochastic/deterministic
the reserves dynamics is: when j-7N, the growth of reserves
mass is practically deterministic, while when j-0 reserves
dynamics behaves like Brownian motion. The units of j, w and Z
are that of [mass�1].

The approach to calculating the switching curve is to solve for
the switching size and target size (y1 and y2, respectively), given
a value of final structural mass z2. For that purpose, I define the
following dimensionless variables

Y ¼ wy; A¼
w2

w0
; B¼

j0

w0
; F¼

j
w

ð8Þ

where j0=dj/dz and w0=dw/dz (note the change in the definitions
of Y and A, compared to Filin, 2009). I then derive (Appendix A)
the following expression for the switching curve

ftarðY2;A;BÞ ¼ ftarðY1;A;BÞ�aAðcoth Y1�FÞ ð9Þ

where the function ftar is defined as ftar(Y2, A, B)=(Y�A)coth Y�BY.
In addition, Y2=w(y2�z2), Y1=w(y1�z2), and w, A, B and F are all
evaluated at structural mass z=z2. Because (y1, z2) lies on the
singular arc, Y1 obeys

farcðY1;BÞ ¼ 2ð1þaÞA ð10Þ

where farc(Y, B)=[2Y�sinh(2Y)]+B[coth(2Y)�1] (the singular arc
equation; Eq. (14) in Filin, 2009; using the revised definitions of Y

and A in Eq. (8)). I used these expressions (Eqs. (9) and (10)) to
calculate the switching curves and growth trajectories presented
in Fig. 1a.

2.3. Maximizing expected allocation to reproduction: semelparity

and iteroparity

Both Filin (2009) and this study, up to this point, have only
considered survival probability as the objective (fitness) function.
Clearly, however, a full description and optimization of a lifecycle



ARTICLE IN PRESS

I. Filin / Journal of Theoretical Biology 264 (2010) 510–516 513
must include reproduction as well. The simplest (yet still realistic)
form of introducing reproduction into the optimization objective
is choosing the terminal reward function in Eq. (4) to be R=y2�z2,
i.e., the mass of reserves accumulated at target size, and available
for production of progeny. Alternatively, R can describe yield, for
example, in agricultural crops. The role of reserves is now dual,
serving as both insurance against starvation during growth (in
addition to providing raw material and fuel for structural growth),
and as the terminal reward gained once target size is achieved.
Therefore, in addition to the overhead costs of structural growth,
discussed above, investment in structure entails an additional
cost in terms of reduced fecundity or yield. The boundary
condition in Eq. (5) becomes l(y2)= �1/(y2�z2).

The expression for the terminal reward from the previous
paragraph describes semelparous mode of reproduction. All
reserves are utilized in a single burst of reproduction, causing
the individual to die of starvation immediately after. However, if
the individual retains some reserves after reproduction (denoted
by y3) it may survive to reproduce additional times, i.e.,
iteroparous mode of reproduction. The individual sacrifices
immediate reproduction (by not utilizing all of its reserves mass
in a single reproduction event), for the sake of surviving to future
reproduction events. Thus, the tradeoff between present and
future reproduction (e.g., between fecundity and parental survi-
val; Roff, 2002, pp. 126–150, pp. 188–198) is generated mechan-
istically in this model, mediated by the value of y3 (i.e., the level of
reserves retained after reproduction).

I adopt here the concept of a reproduction buffer (Kooijman,
2000; p. 115), such that immediately after each reproduction
event, reserves mass is y3 (reproduction buffer emptied), and
subsequent reproduction events occur each time the individual
regains reserves mass y2�z2 (reproduction buffer full). Survival
between reproduction events is then given by s=Sy(y3,y2�z2)
(recall that Sy represents survival along reserves mass transitions,
while holding structural mass fixed; Eq. (2)). The expected
number of reproduction events is 1/(1�s), and the terminal
reward is then R=(y2�z2�y3)/(1�s). The boundary condition in
Eq. (5) becomes l(y2)= �1/(y2�z2�y3)+(qs/qz2)/(1�s). Addi-
tional structural growth does not occur after the individual begins
to reproduce (i.e., after reaching y2 for the first time; determinate
growth).

For semelparous reproduction, l(y2) is now negative (l[y2]=
�1/[y2�z2]), compared with l(y2)=0 when the objective function
was survival probability to target size (previous section).
Integrating backwards from target size y2 towards lower body
masses, l(y) would take longer to reach the singular arc
l(y)=aZ(y�z, z) (the right-hand-side of this equation is non-
negative). Therefore, for a given target size, y2, I expect earlier
cessation of structural growth (smaller switching size, y1) and
smaller final structural mass (z2), when semelparous reproduction
is taken into consideration in the objective function. The effect of
iteroparous reproduction on the switching curve is less straight-
forward (see below).

The following analysis again concerns the case with reserves
growth and exogenous mortality dependent only on structural
mass (i.e., g, s2 and m are functions only of z). For semelparous
reproduction, the expression for the switching curve is

ftarðY2;A;BÞþ
A

Y2
¼ ftarðY1;A;BÞ�aAðcothY1�FÞ ð11Þ

where again Y1 obeys the singular arc equation (Eq. (10)). Fig. 1b
demonstrates that, indeed, structural growth ceases earlier for
semelparous reproduction (dotted curves; compared with the
case of maximizing only survival to target size; previous section;
solid curves in Fig. 1b).
For iteroparous reproduction, Appendix A provides the
expression for the switching curve. As Fig. 1b demonstrates the
switching curve, in this case, has two branches: upper and lower.
Only the upper branch is a solution of the switching curve
equation (Appendix A). Thus, such a solution exists only if the
value of the final structural mass z2 is high enough. The lower
branch of the switching curve represents the additional constraint
y2Zz2+y3 that must be obeyed in the case of iteroparous
reproduction (not surprisingly the lower branch intersects the
abscissa axis at y�y2= �y3= �4 in the case of Fig. 1b). When the
equality y2=z2+y3 holds, we obtain the limit of continuous
reproduction. The amount of reserves spent in each reproduction
event goes to zero (y2�z2�y3=dy-0), survival probability
between reproduction events goes to one (s-[1�Z(y3, z2)dy];
Eq. (2)), and the expected number of reproduction events
becomes infinite (the terminal reward is nonetheless finite:
R=[y2�z2�y3]/[1�s]-1/Z[y3, z2]). From a biological perspective,
however, such continuous reproduction, which consists of an
infinite number of infinitesimally small progeny, can only be
regarded as an approximation, at best. I further consider this issue
below in the discussion.
3. Discussion

In this study, I extended my previous work (Filin, 2009) and
considered optimal stopping conditions for structural growth,
when individuals must grow to some given finite target size, and
when reproduction is included in the optimization objective.
I found that even when the optimization objective is maximizing
survival to target size (as in Filin, 2009; i.e., no reproduction) it is
optimal to abandon structural growth altogether close to the
target size, and to proceed only by accumulating reserves.

Only when there are no overhead costs of building structural
mass (a=0), is it optimal to keep investing in structure all the way
to the target size. The reason is that the individual pays for such
overhead losses of reserves in increased mortality, due to the
extra time required to regain those lost reserves. Close to the
target size, it is optimal to avoid any such losses of reserves mass
(and thus instantaneous total body mass z[t]+y[t]). In addition,
Fig. 1a demonstrates that the higher the overhead costs (i.e.,
higher a), the earlier structural growth ceases and the smaller
final structural mass is (see also Figs. 2 and 3 in the supplemen-
tary material).

The effect of reducing the level of noise in the dynamics of
reserves (i.e., reducing the growth variance s2) is less straightfor-
ward. At small target sizes, a lower noise level increases the final
structural mass. However, the cessation of structural growth
occurs earlier (i.e., at a smaller total body mass), because lower
noise levels also promote faster structural growth. At large target
sizes the effect is reversed, lower noise levels cause smaller final
structural masses (Fig. 1a; see also Figs. 2 and 3 in the
supplementary material).

Filin (2009) also found that varying the growth variance may
either increase or decrease final structural mass, depending on the
function of the structural trait (e.g., foraging-related or defensive).
However, the effect of growth variance in this paper is funda-
mentally different from the one found by Filin (2009). Because
target size is, in effect, infinite in Filin (2009), the results
described in that work concern the effect of growth variance on
the asymptotic structural mass (i.e., at very large total body
masses: y-N). Here, by contrast, I consider the effect of the
growth variance on optimal cessation of structural growth due to
a finite target size, and at final structural masses potentially far
from the asymptotic value. As discussed above, the signs of these
two different effects may in fact be opposite.
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When I incorporate reproduction into the optimization objec-
tive, the results vary depending on whether reproduction is
semelparous or iteroparous (Fig. 1b). Semelparous reproduction
always causes earlier cessation of structural growth and smaller
final structural masses, compared to the case with no reproduc-
tion (when survival is the optimization objective). Iteroparous
reproduction introduces a new parameter into the model, y3, the
amount of reserves retained by the individual after a reproduction
event. As Fig. 1b demonstrates, at very small target sizes (but
nonetheless larger than y3) the switching size is the initial size
and there is no structural growth at all throughout the entire
lifetime of the individual (the region right of the iteroparity
switching curve in Fig. 1b). At larger target sizes, cessation of
structural growth is delayed, compared to either semelparous
reproduction or no reproduction, causing larger final structural
mass for a given initial condition (see growth trajectory examples
in Fig. 1b). Finally, at even larger target sizes the switching curve
for iteroparous reproduction falls below that for no reproduction
and asymptotically approaches that of semelparous reproduction.

The above qualitative conclusions remain unchanged also
when mortality is size-dependent, decreasing with structural
mass (see Figs. 2b and 3b in the supplementary material). The
effect of size-dependent mortality in this case is only quantitative,
prolonging structural growth and thus resulting in larger final
structural mass. The effects of increased overhead costs or
reduced noise level remain qualitatively the same.

The growth trajectory examples in Fig. 1b demonstrate that,
given identical initial conditions, target size and parameter values
(including identical functional forms of g, s2 and m), the
reproduction mode (i.e., no reproduction, semelparity or iter-
oparity) does not affect the growth trajectory itself. The
reproduction mode only affects the stopping condition, i.e., the
body and structural mass at which structural growth ceases.
(Mathematically, that is because the reproduction mode only
affects the terminal reward function R in Eq. (4).). This provides
an interesting prediction for comparative studies, where closely
related species or populations, or even different individuals
within the same population, may exhibit different growth
patterns, depending on the reproduction mode they adopt
(semelparous or iteroparous).

A related question is that of sexual dimorphism (this issue was
also briefly addressed in the context of deterministic dynamic
optimization models in the discussion of Kozlowski and Wiegert,
1987). Because the benefits and costs of body size and structures
vary between males and females within a species, the terminal
reward function should also depend on sex. As discussed in the
previous paragraph, this would affect the stopping condition, i.e.,
males and females will cease structural growth at different body
mass and attain different final sizes of structures. However, early
growth and development will be identical. This is a pattern of
bimaturism, and in the context of heterochrony, may lead to males,
for example, being hypermorphic compared to females (McNa-
mara, 1995; i.e., sexual dimorphism due to differences in timing of
developmental transitions between males and females). However,
if there are additional sex-specific differences in consumption,
assimilation, metabolism or mortality, the optimal growth trajec-
tories of males and females may diverge earlier in life, and before
final structural size is attained. When such differences are caused
by differences in behavior between males and females (e.g., Rennie
et al., 2008), the model may be extended to include reversible
behavioral transitions (which can then be optimized separately for
males and females), in addition to the irreversible structural
growth, as presented and discussed in Filin (2009).

As discussed in the previous section, when y2=z2+y3, iteropar-
ous reproduction becomes continuous, consisting of an infinite
number of infinitesimally small progeny. There are at least two
ways to remedy this biologically questionable result. First, one
can define an upper bound smaxo1 for the survival probability
between reproduction events (i.e., s). As a result, the expected
number of reproduction events can never exceed 1/(1�smax)
(which is finite because smaxo1). The parameter smax may
embody mortality factors during the reproduction event itself,
e.g., due to increased susceptibility to predation. (See also Fig. 3 in
the supplementary material.)

A second more mechanistic way to avoid continuous repro-
duction is to introduce a minimum nonzero amount of reserves
that the individual must expend during each reproduction event.
For example, this amount may represent the costs of producing a
single egg. Denoting this amount by aegg, the constraint on target
size becomes y2Zz2+y3+aegg. When the equality holds, the
individual reproduces in single eggs, i.e., clutch size is one, rather
than continuously as before (if aegg=0). Fig. 4 in the supplemen-
tary material further explores these modifications. It is important
to note that, although not explicitly formulated as part of the
model, using this last modification, optimal clutch size arises as a
byproduct of the life history optimization within this model. Thus,
the theoretical framework presented in this study also addresses
this important ecological and evolutionary problem.

There exists an analogy between the model described in this
paper and dynamic optimization models for optimal size at
maturity when season length is finite (Cohen, 1971; Vincent and
Pulliam, 1980; Kozlowski and Wiegert, 1986). A comparison with
such models, demonstrates that body mass y is analogous to the
time-coordinate in those models. Target size is analogous to
season length, and y�y2 of Fig. 1 is analogous to the ‘time-to-go’
until season end, which determines the optimal switch between
growth and reproduction in those models. However, growth in
those models is deterministic. Therefore, exploring, for example,
the effect of noise in growth is not within their scope.

This study explored the optimal way to invest in structural
growth, starting from some initial condition and finishing at
a given final target size. Target size was taken to be a fixed
parameter, and growth and life history were optimized under that
constraint. Elsewhere I will additionally explore the simultaneous
optimization of the endpoints, i.e., of initial and target sizes (e.g.,
representing optimal progeny and adult sizes, respectively).
Kozlowski (1996) previously obtained such optimal initial and
adult sizes for a deterministic life history model. The stochastic
model in this work enables me to investigate additional questions,
such as the effect of noise in the growth of individuals on optimal
progeny and adults sizes.

Concerning the above discussion of sexual dimorphism and
optimal clutch size, optimizing target size itself will enable to
explore sexual size dimorphism in the adult (total) body mass,
in addition to sexual dimorphism in the allocation between
structure and reserves. Optimization of initial and adult sizes
will also result in simultaneous optimization of egg and clutch
size, as aegg will no longer be a fixed parameter but will depend
on the initial size, subject to optimization. Finally, I am also
currently working on an extension of the model to indeterminate
growers.

In conclusion, the theoretical framework, presented in this
study, provides a powerful tool for addressing a wide variety
of life-history and evolutionary questions, under biologically
realistic conditions, including: subjection to both starvation
mortality and exogenous hazards, noise in the dynamics of
individual state, and distinction between reversible and irrever-
sible components of individual size. These two last aspects of the
growth and development of individuals have important implica-
tions to evolution of life history (as well as to population
dynamics; Filin, 2009), that have not yet been fully explored
and assessed.
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Appendix A. Derivation of the optimal structural growth
curve and the switching curve

Applying the Pontryagin maximum principle (Intriligator,
1971, pp. 344–348; Perrin and Sibly, 1993, appendix therein;
Perrin et al., 1993), I obtain the Hamiltonian

H¼�Zðy�z; zÞð1þauÞþlu

where z is the state variable, l is the costate variable associated
with z, and u is the control variable, defined as _z ¼ u (recall that
the dot sign stands for derivative with respect to y). The dynamics
of the costate variable is given by

_l ¼�
@H

@z
¼ ð1þauÞ

@Z
@z
�
@Z
@y

� �
y¼ y�z

z¼ z�ðyÞ

ðA:1Þ

with boundary condition given by the derivative of the final
function (terminal reward R in Eq. (4)) with respect to the state
variable z

lðy2Þ ¼
@ log R

@z2

(i.e., Eq. (5); Intriligator, 1971, p. 348).
The switching function for investing in structural mass is given

by S=qH/qu, or

S¼�aZðy�z; zÞþl

when S=0, I obtain singular control, i.e., this is the equation
satisfied by a singular arc, to which I refer throughout the main
text. Singular control additionally requires dS/dy=0, which
results in the general equation for the singular arc presented by
Filin, (2009)

@Z
@z
�ð1þaÞ @Z

@y

� �
y ¼ y�z

¼ 0

(see derivation therein).
I confine the analysis, hereafter, to the special case of reserves

growth and exogenous mortality dependent only on structural
mass z (i.e., Eqs. (6)–(8)). Applying the conclusion that between y1

and y2 no structural growth occurs (i.e., the optimal control is
u*=0; thus, z*(y)=const=z2), Eq. (A.1) becomes

_l ¼ w0 coth Y�w0Y csch2Yþw2 csch2Y�j0

where Y=wy=w(y�z) (Eq. (8)), j0=dj/dz and w0=dw/dz, all
evaluated at z=z2. Integrating from y1 to y2 gives

lðy2Þ ¼ lðy1Þþ
w0

w

� �
Y coth Y�w coth Y�

j0

w

� �� �Y2

Y1

where Y1=w(y1�z2) and Y2=w(y2�z2). Multiplying both hand
sides by w/w0, using the definitions of the dimensionless variables
in Eq. (8), and recalling that (y1, z2) lies on the singular arc
(therefore, l[y1]=aZ[y1�z2, z2]=aw coth Y1�aj), I finally obtain

½ðY2�AÞcoth Y2�BY2��L¼ ½ðY1�AÞcoth Y1�BY1��aAðcoth Y1�FÞ
ðA:2Þ

where

L¼
w
w0

� �
lðy2Þ ðA:3Þ
And using the definition of ftar in the main text (under Eq. (9)),
Eq. (A.2) can be rewritten as

ftarðY2;A;BÞ�L¼ ftarðY1;A;BÞ�aAðcoth Y1�FÞ ðA:4Þ

When the objective function is survival probability to final
size, L=0, and I obtain Eq. (9). When the objective function
includes semelparous reproduction l(y2)= �1/(y2�z2)=w/Y2.
Eq. (A.4) then becomes Eq. (11). For iteroparous mode of
reproduction, l(y2)= �1/(y2�z2�y3)+s0/(1�s) (where s0 stands
for qs/qz2). The survival probability s between reproduction events
is given by

s¼
sinh Y3

sinh Y2
exp½FðY2�Y3Þ� ðA:5Þ

(the expression for Sy in Eq. (3) of Filin, 2009) where Y3=wy3 (y3 is
taken to be a fixed parameter of the model). Consequently,
s0/s=q log s/qz2=Y3

0(coth Y3�F)�Y2
0(coth Y2�F)+F0(Y2�Y3).

Given that Y2=w(y2�z2), and F=j/w, I obtain (w/w0)Y2
0=Y2�A and

(w/w0)F0=B�F (using definitions in Eq. (8)). The mass of reserves
immediately after a reproduction event is y3, and its dimension-
less counterpart is Y3=wy3. Given that y3 is a fixed parameter,
(w/w0)Y3

0=Y3, and then Eq. (A.3) becomes

L¼�
A

Y2�Y3
�

s

1�s
½ðY2�AÞcoth Y2�BY2þAFþBY3�Y3 coth Y3�

Finally, by additionally utilizing the definition of ftar, I arrive at
the expression for the switching curve in the case of iteroparous
reproduction

1

1�s
ftarðY2;A;BÞþ

A

Y2�Y3
þ

s

1�s
½AFþBY3�Y3 coth Y3�

¼ ftarðY1;A;BÞ�aAðcoth Y1�FÞ ðA:6Þ

where s is given by Eq. (A.5).
Appendix B. Modifications for nonzero starvation boundary

For the survival-probability-to-target-size and iteroparous-
reproduction scenarios the expressions are easily modified for
nonzero starvation boundary a by redefining Y (Eq. [8]) as

Y ¼ wðy�aÞ ðB:1Þ

Similarly the hazard density in Eq. (6), is given by

Zðy; zÞ ¼ w coth½wðy�aÞ��j ðB:2Þ

Subsequently, the expressions for the switching curves in
these cases remain the same (Eqs. (9) and (10), and Eq. (A.6) in
Appendix A).

For semelparous reproduction, I define ~a as the amount of
reserves that cannot be utilized for reproduction, once target size
is achieved. It may be possible that the amount of reserves that
cannot be utilized for maintenance to avoid starvation, i.e., the
starvation boundary a, can nonetheless be utilized for reproduc-
tion (in this case ~ara). In contrast, some reserves may be utilized
for maintenance, but not mobilized for reproduction (in that case
~aZa). Regardless of which case occurs, the terminal reward is
R¼ y2�z2� ~a, and the boundary condition in Eq. (5) takes the form
lðy2Þ ¼ �1=ðy2�z2� ~aÞ. The expression for the switching curve
is then

ftarðY2;A;BÞþ
A

Y2�
~Y
¼ ftarðY1;A;BÞ�aAðcoth Y1�FÞ ðB:3Þ

where Y2=w(y2�z2�a) and ~Y ¼ wð ~a�aÞ ( ~Y can be either positive
or negative depending on which of the two above-mentioned
cases occur). Eq. (B.3) becomes Eq. (11) if ~a ¼ a (i.e., if ~Y ¼ 0).
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Appendix C. Supplementary material

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2010.02.031.
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