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Supplemental Derivations and Explanations of the Model and Its Calibration
An Analytical Formulation of Seasonal Life Cycles

A fundamental life-table expression asserts that the net reproductive rate is given by

l p b S , (A1)� x x
x

where x represents age; bx and Sx are age-dependent reproduction and survival, respectively; and the summation
is carried over all ages for which there is nonzero reproduction. In our model, reproductive events occur at ages

, where is the maximal number of clutches, givenx p T � T , T � 2T , T � 3T , … , T � nT n p n(T , T )m c m c m c m c m

season length T and time to maturity Tm. Age-dependent survival is the product of survival from egg laying to
maturity times survival from maturity to postmaturation age x. The former is incorporated in equation (1)
through C and Sm (see “Model Development” and the next section). The latter is simply given by exp [�m #m

, because adult mortality mm is constant (i.e., in the context of this model, independent of initial size).(x � T )]m

In addition, because we assume that egg production rate is constant, clutch size at all ages (i.e., bx) is given by
( ), where egg production rate is also incorporated into the parameter C. Consequently,egg production rate # Tc

the life-table expression for net reproductive rate (eq. [A1]) is now given by

n

l p C # S # T # exp (�j # m T ). (A2)�m c m c
jp1

It is now straightforward to see that the summation term describes the sum of a geometric series, which,
combined with Tc of the right-hand side of equation (A2), produces equations (2) for the reproductive life span
(RLS; compare eq. [A2] to eq. [1]). In the rest of this section, we compare this model with previous
formulations of seasonal life cycles.

Grant et al. (1993) presented the following expression for the finite rate of increase of an allele based on a
model of grasshopper life cycles derived by Sibly and Monk (1987; see also Willott and Hassal 1998):

�m t �M �m#m t1 1 2 2(1/2) # n # e # (1 � e )Fe p , (A3)
�m t2 21 � e

where of eggs in a single clutch; and adult mortality rates, respectively;n p number m , m p juvenile M p1 2

egg mortality; to first oviposition; interval between clutches; numberoverall t p time t p time m p maximal1 2

of clutches that can be laid during the season. In equation (A3), eF is equivalent to our l, but because we
consider the rate of increase of the population and not of specific alleles, the factor (1/2) in the right-hand side
of the equation is not included in our model (a factor of 1/2 nonetheless enters the formulation through sex ratio;
see below).

Clearly, our Tc is equivalent to t2 of Grant et al. (1993), and our mm is equivalent to their m2. Our isn(T , T )m

represented by m in their model. The number of eggs per clutch, n, is given in our formulation by (egg
, that is, the rate of egg production multiplied by the interclutch interval. Subsequently, weproduction rate) # Tc

incorporate the Tc of this latter product into the expression for RLS (eqq. [2]), and the egg production rate is
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included in the parameter C. Time to first oviposition is the sum of time to maturity and time from maturity to
first oviposition, that is, .t p T � T1 m c

The expression of Grant et al. (1993) for survival to first oviposition, , is represented in ourexp (�m # t )1 1

model by , where exp(�mmTc) is subsequently incorporated in equations (2) for the RLS. OurS # exp (�m T )m m c

formulation using Sm is more general than that of Grant et al. because we do not assume that juvenile mortality
is constant. Moreover, we assume that during the interval between maturity and first oviposition, individuals die
according to the adult mortality rate and not the juvenile mortality rate, as in Grant et al. Finally, egg survival,
exp(�M), is also incorporated in our model within the parameter C. The remaining terms of equation (A3) are
incorporated in the expression for the RLS (eqq. [2]). These terms represent the sum of the geometric series of
survivorships at each oviposition event, as given by equation (A2).

Equations (1) and (2) are very similar to expressions that Kozlowski and Wiegert (1986) derived for life span
reproductive allocation in the context of a model for optimal size at maturity. Total life span reproductive
allocation is represented by the instantaneous rate of reproductive allocation multiplied by the average duration
of energy allocation to reproduction, as evaluated at birth (their eqq. [4], with ). This is equivalent to oura p 0
equation (1): the first term in the product corresponds to our C (which, however, also includes mortality factors
in our model); the second term corresponds to our , because we consider reproductive life span asS # RLSm

evaluated at maturity (and not at birth, as Kozlowski and Wiegert [1986] did). In fact, substituting equations (2)
in the product gives an expression almost identical to that of Kozlowski and Wiegert (1986) for theirS # RLSm

case of reproduction in clutches (their eq. [17]; the expressions are not identical, however, because Kozlowski
and Wiegert [1986] did not account for the fact that the last clutch produced is often not laid because the season
ends and the mother dies while still producing it).

Components of the Parameter C and Their Empirically Based Estimates

Survival to maturity, Sm, refers in our model to the survival from some initial juvenile stage (specifically, we
consider the second instar stage to be the initial stage). Mortality at the adult stage is accounted for in the RLS
(see eqq. [2]). Earlier mortality is incorporated in the parameter C. In addition, C includes both the per capita
egg production rate of a female and a factor smaller than 1 that represents the sex ratio of the population, that is,
the proportion of females in the population (representing the fact that only females produce and lay eggs). The
parameter C is therefore the product of all these components:

C p sex ratio # egg production rate # survival to hatching # early juvenile survival. (A4)

Given empirical estimates of sex ratio and the rate of egg production (table 1), the other two components in
equation (A4) were estimated by setting day�1, to produce an equilibrium density of 16 m�2 (typicalC p 0.084
field densities of Melanoplus femurrubrum second instars; Ovadia and Schmitz 2002) when season length is 90
days (this procedure is described in the following section). In other words, (survival to hatching) p (early
juvenile root of (as given in table 1). This value is at the low endsurvival) p square [0.084/(0.5 # 2)] p 0.29
of the range of reported estimates for egg and first-instar survivorships (Joern and Gaines 1990; Grant et al.
1993; Beckerman 2002), and it may be because we overestimated egg production, which is expected to drop as
the season progresses (e.g., Joern and Gaines [1990] present data for within-season reduction in egg production
by a factor greater than 2). Another reason may be that there was no consideration to stochastic variation in
season length in the calculation of C. But when this is corrected by considering a uniform distribution of season
lengths between 60 and 120 days, the estimate rises only slightly to 0.3.

Survival and Time to Maturity as Determined by Size-Specific Mortality and Growth:
Some Theoretical Considerations

In general, survival from initial time t0 to some subsequent time tm is related to instantaneous mortality through
the expression
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tm

S(t , t ) p exp � m(t)dt . (A5)0 m �( )
t0

Given that growth also occurs, one can rewrite equation (A5) in terms of size, rather than time:

zm

m(z)
S(z , z ) p exp � dz , (A6)0 m �( )g(z)

z0

where m(z) and g(z) are size-specific instantaneous mortality and growth rates, respectively (Werner and Gilliam
1984). Based on equation (A6), we find

d ln S m(z )m 0p , (A7)
dz g(z )0 0

and, therefore, the way survival to maturity Sm varies with initial size z0 depends on how the ratio m/g changes
with initial size.

We first note that the relationship Sm(z0) is predisposed to be convex (i.e., concave up) because of the
exponent in equation (A6). That means that if m/g is independent of size, then we obtain a convex (specifically,
exponential) relationship, that is, . Moreover, the relationship is also convexS (z ) p exp [�m/g # (z � z )]m 0 m 0

wherever m/g increases with size. This may occur, for example, if mortality rate is constant and growth rate
decreases with size.

The situation becomes more complex if m/g decreases with size. This is also the most biologically realistic
case, because not only does survival increase with initial size, mortality is expected to decrease as initial size
increases. Moreover, for the initial phase of growth (i.e., for the size range encompassed by initial sizes), growth
rate is expected to increase with size. When m/g decreases with size, we can obtain concave, convex, linear, or
sigmoid relationships between survival to maturity and initial size.

The following simple example will serve to demonstrate that it is not straightforward to determine the shape
of Sm(z0) just from the functional form of size-specific mortality and growth. Given constant juvenile mortality mj,
and size-specific growth rates that are proportional to size (resulting in exponential growth), weg(z) p g # z0

obtain

(m /g )j 0

z0S (z ) p . (A8)m 0 ( )zm

This relationship can be convex, concave, or linear, depending on whether the ratio mj/g0 is greater than, less
than, or equal to 1 (respectively). Therefore, in order to determine the shape of Sm(z0), it is not enough to know
the general functional form of m/g with respect to size; the specific value of this ratio is also important.

Another example is that when growth rate is constant ( ) and mortality decreases linearly withg p constant
size, , one obtains a Gaussian (i.e., sigmoid) form of survival. Therefore, Sm(z0) ism(z) p m � m # (z � z)m 0 m

either concave or convex, depending on where actual initial sizes of individuals cluster.
Time to maturity can be found through the expression

zm

dz
T (z ) p , (A9)m 0 � g(z)

z0

which for the scenario described by equation (A8) becomes
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1 zmT (z ) p ln , (A10)m 0 ( )g z0 0

or, given equations (2),

(m /g )m 0

z0�m TmRLS(z ) p RLS # 1 � e # , (A11)0 Tp� ( )[ ]zm

when reproduction is continuous (Tc goes to zero). Again, equation (A11) can describe either a concave or a
convex relationship, depending this time on the ratio of adult mortality to relative growth rate mm/g0. (Recall that
for this scenario survival to maturity depends on the ratio of juvenile mortality to relative growth rate, mj/g0,
rather than adult mortality; eq. [A8].)

Description of Size Classes and Size Variation in the Melanoplus femurrubrum System

Initial size refers to that of second instars (“Model Calibration”) and not to size at hatching. We consider three
initial-size classes of second-instar nymphs (after Ovadia and Schmitz 2002): small (body mm; meanlength ! 9

: mm), average (9–12 mm; mm), and large (112 mm;size � SE 8.106 � 0.123 10.157 � 0.085 13.1 � 0.45
mm). Additionally, we numerically denote the three size classes as 1, 2, and 3. Survival to maturity and time to
maturity (Sm and Tm, respectively), reproductive life span, and the product (eq. [5]) will all beS # RLSm

described as functions of size class, rather than of size per se (i.e., body length). In other words, values on a
body-size axis will be 1, 2, or 3 and not body lengths in millimeters.

The naturally occurring frequency distribution of these size classes is 15%, 70%, and 15%, for small, average
and large, respectively (Ovadia and Schmitz 2002). We will additionally consider two hypothetical distributions
in order to demonstrate how size variation may affect population dynamics. The first describes a homogenous
population, in which all members are average (i.e., 0%, 100%, 0%). The second is a uniform distribution, with
equal representation of all three size classes (i.e., 33.33%, 33.34%, 33.33%). A homogenous population describes
the extreme case of no size variation in the population, while a uniform distribution describes the extreme case
of maximal variation. (A bimodal distribution with many small and large and a few average individuals may
describe a higher level of variation, but given the observed unimodality of the distribution in the field, we limit
ourselves to uniform variation as the case of maximal variation.). Finally, we note that the mean size class value
for all three distributions is 2. By choosing such frequency distributions, therefore, we keep the mean of the
distribution fixed, while changing only the variance. This allows us to study the effect of size variation alone,
without the confounding effects of changes in mean initial size.

Estimating Density Dependence of Survival and Time to Maturity

We used data on the survival and growth of second instars in field cages, given three different initial-density
treatments (16, 24, and 32 m�2), three different initial-size treatments (described in the text), and two predator
treatments (presence/absence; Ovadia and Schmitz 2002; O. Ovadia, unpublished data). A three-way ANOVA
showed that the mean relative growth rate of grasshoppers (log[final size/initial size] divided by 26 days) varied
significantly only by initial-size class ( , , ). All other main and interaction effectsF p 146.0 df p 2, 168 P ! .001
were nonsignificant. Therefore, we did not incorporate density dependence into time to maturity. Tukey-Kramer
multiple comparisons showed that the mean growth rate differed significantly among all size classes.

A three-way ANOVA of showed a significant effect of initial size ( , ,log (survival) F p 137.4 df p 2, 248 P !

) and of initial density ( , , ). The effect of predator treatment and all.001 F p 12.9 df p 2, 248 P ! .001
interaction effects were nonsignificant. This result suggests that the form of density dependence described by
equation (6) is appropriate in our case (specifically, because of no interaction). Moreover, Tukey-size # density
Kramer multiple comparisons showed that mean survival to maturity was significantly different among all
density treatments, closely following a linear relationship (as in the log of eq. [6]). Yet such multiple
comparisons also demonstrated that mean survival to maturity of the small-size class differed significantly from
that of the average- and large-size classes but did not differ between the latter two. Therefore, the effect of initial
size on survival is nonlinear (as is indeed apparent in fig. 2).
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Given these results for survival, we used multiple regression of on density, initial body length,log (survival)
and the square of initial body length, based on the data of figure 2 ( , , ). TheR p 0.986 df p 2 P ! .001
estimated coefficient of density is identified as a in equation (6) and was found to be 0.0152 m2 (95%
confidence interval: [0.0130, 0.0174]). Additionally, as expected from the nonlinear effect of initial-size class,
both the linear and the quadratic terms of body length possessed coefficients significantly different from zero,
further suggesting that no overfitting of the data was done and that the fitted model (based on eq. [6]) is an
appropriate description of the survival data.

Season Length and Adult Mortality

First instars begin to emerge during either mid-June or early July (e.g., Ovadia and Schmitz 2004b). Adult-
killing frosts may occur as early as mid-September or as late as the end of October and early November
(Beckerman 1999). Therefore, we assert that season length for M. femurrubrum varies between 55 and 120 days.
This range of season lengths lies below that reported for British grasshoppers. Grant et al. (1993) referred to 120
days as the minimum season length in southern England and to 70 days as unrealistically short (they consider
season lengths of up to 190 days). They criticized a previous study by Sibly and Monk (1987), who considered
much shorter season lengths, well within the range of 55–120 days considered here. Their disagreement mainly
concerned the importance of season length in the evolution of grasshopper life cycles.

As discussed in the main text, the population growth rate l (equivalent to fitness in Sibly and Monk 1987;
Grant et al. 1993) becomes less sensitive to season length as seasons become longer. The relevant quantity here
is (see eqq. [2]–[4]), and therefore, the importance of season length to life-history evolution, as wellm (T � T )m m

as to population dynamics, must be considered with regard to both adult mortality and time to maturity. Adult
mortality mm for British grasshoppers typically lies between 0.03 and 0.14 day�1 (Sibly and Monk 1987; Grant et
al. 1993). Additionally, mortality rates may substantially vary between years (Belovsky and Joern 1995;
Beckerman 2002; Ovadia and Schmitz 2004b). In this study, we are concerned mainly with variation in the
initial size of individuals and in season length. Thus, we consider a fixed adult mortality of 0.035 day�1 (based
on the results of Oedekoven and Joern [1998] for Melanoplus sanguinipes; see also Willott and Hassal 1998),
who used 0.04 day�1 in order to obtain fitness estimates of four British grasshoppers].

Estimating Time to Maturity

Despite criticism by Grant et al. (1993), various studies (e.g., Sibly and Monk 1987; Wall and Begon 1987a;
review in Joern and Gaines 1990) suggest that smaller individuals take longer to develop. In fact, the insertion of
an additional instar stage during development, which Grant et al. (1993) suggested as a way to compensate for
small size at hatching (see also Willott and Hassal 1998), may itself cause a relationship between initial size and
time to maturity. We obtained two possible estimates of time to maturity as a function of initial size, based on
two independent sources. First, Vickery et al. (1981) reported the length of nymphal periods for five- and six-
instar life cycles of M. femurrubrum. If individuals of our smallest size class go through a six-instar life cycle to
compensate for their small initial size, we obtain (based on Vickery et al. 1981) nymphal periods of 44.1 and
41.5 days for our small- and average/large-size classes, respectively. These values are termed “Tm estimate 1.”

A second estimate of time to maturity was obtained using growth data of second instars in field cages (Ovadia
and Schmitz 2002, 2004a; O. Ovadia, unpublished data). These data give the following estimate of size-
dependent time to maturity: 45.4 days for the small-size class, 41.6 days for the average class, and 36.2 days for
the large class. These values are termed “Tm estimate 2.”

In order to estimate time to maturity from field cage data, we used body length measurements of individual
grasshoppers in field cages through the course of the season (O. Ovadia and O. J. Schmitz, unpublished data).
We fitted a Gompertz growth curve to the data, using nonlinear regression and obtained the growth equation
coefficients. Time to maturity was then estimated using 22 mm as the adult body length (this is a typical adult
size in the old-field system that was studied; Schmitz and Suttle 2001; Ovadia and Schmitz 2002). Finally,
because in using these data we could only estimate the time between second-instar and adult stages, we added
12.5 days based on Vickery et al. (1981; first-instar of the second-instar duration).duration � half

Modifying the Parameter C to Account for Different Equilibrium Densities

In our Ricker model of density dependence (eq. [6]), the equilibrium density is given by
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ln {E[S (z , 0) # RLS]} � ln Cm 0∗N p . (A12)
a

Given equation (A12), we note that equilibrium density depends on the parameter C and on the population mean
, given some distribution of initial sizes. In addition, we can modify the parameter C to obtainS # RLSm

different equilibrium densities. The different equilibrium densities considered in the subsection on population
stability in the deterministic case were obtained by modifying C, where the mean is given for normalS # RLSm

size variation. This is most readily interpreted as variation in egg and/or first-instar survival (eq. [A4]). For
example, if m�2, then we obtain egg and juvenile survival of 0.29 each (as in table 1; giving∗N p 16 C p

day�1). To obtain an equilibrium density of m�2, these two survival rates both increase to 0.69∗0.084 N p 130
(giving day�1). (This latter value of egg/first-instar survivorship is at the high end of the range ofC p 0.47
values reported for grasshoppers; Joern and Gaines 1990; Grant et al. 1993; Beckerman 2002.)

Continuous vs. Discontinuous Reproduction

We substitute (day) in the expression for RLS (eqq. [2]). Consequently, RLS increases in a moreT p 1c

continuous manner with season length (fig. A1; cf. fig. 1), and as a result, also changes continuously withln l

season length (as opposed to the few discrete values presented in fig. 6).
Figure A2 is equivalent to figure 6 but for continuous reproduction. It presents the curves of population

growth rate versus size variation for all season lengths within a given range. A comparison with figure 6
highlights several differences between continuous and discontinuous reproduction: (1) for continuous
reproduction, there are as many curves as there are different values of season length; (2) alwaysln l ln l

decreases with size variation, unlike in the discontinuous case; (3) the range of values of always decreasesln l

with size variation (compare with fig. 6a, 6c). Nonetheless, size variation enhances population stability by
decreasing the variance of in all cases (table A1), although this effect is weaker for the continuous than forln l

the discontinuous case (cf. percentages in tables 4, A1).
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Figure A1: Reproductive life span (RLS) as a function of season length for three initial size classes (denoted
small, average, and large). In this case, reproduction is continuous, and the interclutch period, Tc, is set at 1
(day); consequently, days (cf. fig. 1).RLS p 28.07Tp�

Figure A2: Curves of versus size variation, when reproduction is continuous (as opposed to discontinuous;ln l

cf. fig. 6).
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Table A1
Environmental standard deviations of (SDln l; i.e., square root of theln l

variance in ), based on figure A2 (continuous reproduction)ln l

55 ! T ! 120 59 ! T ! 120 64 ! T ! 120 69 ! T ! 120

None .2485 102.15% .1997 101.97% .1544 101.82% .1205 101.72%

Natural .2432 100.00% .1958 100.00% .1516 100.00% .1185 100.00%

Uniform .2362 97.11% .1906 97.34% .1479 97.53% .1157 97.66%

Note: Season lengths are given in days. All season lengths within a given range occur with equal
probability.


