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ABSTRACT

Loss of dispersability and body-mass change (dwarfism and gigantism) are two common
phenomena on islands. Based on Skellam’s (1951) theory of dispersal, we suggest a new theory
of insular evolution that connects isolation and island size to dispersability and body mass.
Using optimal body mass considerations and allometric scaling laws, our new theory predicts:
(1) expected direction of body-mass change depends on the relationship between body mass
and dispersability; (2) rate of body-mass change (i.e. evolution rate) is inversely proportional to
the island’s area; (3) the magnitude of the shift in optimal body mass, either towards gigantism
or dwarfism, is also inversely proportional to the island’s area. Available empirical data support
our predictions. Our theory provides new, consistent and testable predictions that connect
several known observations on islands.

Keywords: allometry, dispersability, dwarfism, gigantism, insular evolution, island size, optimal
body mass.

INTRODUCTION

Insular evolution has attracted the attention of ecologists and evolutionary biologists
for many decades (MacArthur and Wilson, 1967; Williamson, 1981). Through unique
characteristics, such as increased isolation and decreased size, islands promote extreme
evolutionary changes and fast evolutionary selection on organisms (Grant, 1986; Brown
and Lomolino, 1998; Whittaker, 1998). These evolutionary changes reflect the selective
forces correlated to the unique characteristics of islands (Grant, 1981), and islands are also
considered to be ‘natural experiments’ where different evolutionary processes can be studied
(MacArthur and Wilson, 1967; Carlquist, 1974; Williamson, 1981; Whittaker, 1998).

Two well-known observations of insular evolution are loss of dispersability (Darlington,
1943; Brown and Lomolino, 1998; Whittaker, 1998) and the tendency of species to become
either smaller (dwarfism) or larger (gigantism) than their mainland populations (Foster,
1964; Case, 1978; Lomolino, 1985; Diamond, 1987; Damuth, 1993). [Note that Foster
(1964) has explicitly referred to mammals on islands and termed it ‘the island rule’.] Loss of
dispersability is usually explained by ecological release (i.e. decreased predation pressure
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and lack of competitors; McNab, 1994a) and by limited resources (McNab, 1994a,b). Body-
mass change has many explanations, some of which are universal (Case, 1978) and some of
which are clade-specific (Foster, 1964; Diamond, 1987). Throughout this paper we use the
term ‘body-mass change’ to indicate both dwarfism and gigantism. Given that body mass is
well correlated with different size dimensions, we expect our predictions to hold for size
dimensions equally. Often, the change in body mass is inversely related to the body mass
of the organism – small animals become larger while large animals become smaller (Foster,
1964; Lomolino, 1985). Similar to the explanations for the loss of dispersability, and
regardless of the specific details of each explanation, body-mass change is also explained by
limited resources and by ecological release.

Several biologists have suggested that ecological release and shortage of resources could
simultaneously explain the phenomena of loss of dispersability and body-mass change
(McNab, 1994a). For example, a lack of predators can promote a flightless bird, after which
that bird can evolve increased size due to the unnecessary demand of keeping the aero-
dynamic dimensions required for flying (Brown and Lomolino, 1998). However, in spite of
the apparent relationship between loss of dispersability and body-mass change, they are
commonly treated separately. Hence, there is a need for a mutual theory that connects the
loss of dispersability and body-mass change together in the context of unique island char-
acteristics. The use of body mass has two advantages for studying evolutionary processes in
insular biogeography. First, many ecological processes may be correlated to, as well as
directly affected by, body mass (e.g. population density, resource use, extinction probability
and dispersability; Peters, 1983; Schmidt-Nielsen, 1984; Calder, 1996). Second, body-mass
correlates (or allometric scaling) allow for generalized scaling relationships across a diverse
group of organisms (Brown and West, 2000).

In the following section, we develop a new theory to connect body-mass change, island
size, dispersability, allometry and evolution rate to provide new predictions of insular
evolution: (1) the direction of the body-mass change (either gigantism or dwarfism) depends
on the sign of the allometric exponent of dispersability; (2) the rate of body-mass change
(or evolution rate) is inversely proportional to the area of the island; (3) the shift in optimal
body mass, either towards gigantism or dwarfism, is inversely proportional to the area of
the island. Thereafter, we provide examples to demonstrate that natural observations do
match our predictions, before stating the implications of our theory for future research.

THE THEORY

Here we propose a new theory that connects and unifies the loss of dispersability with the
tendency of species to become either smaller or larger on isolated islands. We build our
theory on Skellam’s (1951) diffusion-reaction equation, which describes the spread of
organisms in a landscape through a random-walk dispersal, assuming that the spatial
distribution of dispersed offspring is normal with zero mean and a standard deviation, a.
Because a is also the average dispersal distance of an offspring from its source, it reflects
dispersal distance. Given that Ψ is the function of individual density at each point in space,
G is generation time, c is the intrinsic exponential growth rate of the population and ∇2 is the
Laplacian differential operator, Skellam’s equation takes the following form:

∂Ψ

∂t
=

a2

G
∇2

Ψ + cΨ = D∇2
Ψ + cΨ (1)
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where D (D = a2/G) is the diffusion coefficient. For simplicity, equation (1) is based on
Skellam’s exponential growth equations. However, the Appendix shows that when
population size and growth are limited (i.e. density-dependent), our predictions of the
exponential growth model should still hold. Biologically, D can be viewed as dispersability,
representing the rate at which an organism spreads in space, being affected by dispersal
distance and generation time.

Solving equation (1) for the circular island case (i.e. where c > 0 and Ψ > 0 in a circular
area of radius rb, while Ψ = 0 outside the circle), Skellam showed that the dominant solution
grows exponentially with a growth rate:

cisland = c − j1
2 a2

rb
2 (2)

where j1 is a constant equal to 2.405 (Arfken and Weber, 1995). (G does not appear in the
solution, since Skellam chose a time-scale for which G = 1.)

Generalizing Skellam’s result to account for arbitrary time-scale and island shape, we
introduce a new formulation for the population growth rate on the island:

cisland = c − k
D

A
(3)

where A is the island’s area and k is some positive numerical constant, which is determined
by island shape. Biologically, using equation (3) we describe how population growth rate is
affected by island shape, island size and dispersability of the organisms, variables known to
affect population persistence on islands (MacArthur and Wilson, 1967; Williamson, 1981;
Brown and Lomolino, 1998; Whittaker, 1998). Because cisland is negatively correlated with D,
it suggests that, for the same values of c, individuals (or phenotypes) with lower
dispersability (i.e. lower D values) have an advantage on islands by having a higher growth
rate. Additionally, the decrease in cisland is proportional to 1/A, which suggests that the
change in population growth is stronger on smaller islands than on larger ones. We assume
throughout our development that c does not change in the transition from mainland
to island, and therefore we ignore factors such as change in physical conditions and
interspecific interactions, which may affect the intrinsic growth rate itself.

We define Dmainland as the mainland’s optimal dispersability (i.e. dc/dD = 0 at D = Dmainland).
An individual arriving on an island possesses the mainland dispersability Dmainland. Taking
the derivative of equation (3) at Dmainland reveals that the insular selection pressure on
dispersability is:

dcisland

dD �D = Dmainland

= −
k

A
(4)

Because the right-hand side of equation (4) is always negative, the selection pressure always
favours a reduction in dispersability. Additionally, the change in dispersability is strongly
affected by both the size of the island and its shape; the smaller the island and the higher
the k values (greater dissimilarity of the island’s dimensions) are, the faster the change in
dispersability. Therefore, the smaller the island’s area, the higher the evolutionary rates of
the loss of dispersability.

Demographic parameters, including population growth rate, have already been shown to
depend on body mass (Peters, 1983; Schmidt-Nielsen, 1984; Calder, 1996), hence we assume
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that c = c(M). Similarily, we assume that locomotion, and therefore dispersability,
also depend on body mass (Calder, 1996), hence D = D(M). As in the above case of the
relationship between growth rate and dispersability, a mainland population can maximize
its growth rate with respect to body mass and converges to a certain mainland optimal body
mass (for previous use of ‘optimal body size’, see Case, 1978; Brown et al., 1993), Mmainland

(when dc/dM = 0 at M = Mmainland). Because the island optimal body mass maximizes cisland,
it differs from Mmainland. This results in a selection pressure on body mass, given by:

dcisland

dM �M = Mmainland

= −
k

A

dD

dM �M = Mmainland

(5)

Equation (5) shows that the change of body mass on an island, relative to that on the
mainland, does not have a single direction, but rather may be positive (becoming ‘giant’) or
negative (becoming ‘dwarf’), depending on the sign of the derivative of D(M) at Mmainland:
if the derivative is negative the organism shows gigantism, while if it is positive then
dwarfism occurs. As in the above case of reduced dispersability, the selection pressure for
gigantism or dwarfism is stronger on smaller islands due to the reciprocal relationship
between cisland and A.

To achieve workable predictions from our development, we use power-law allometric
relationships (Peters, 1983; Schmidt-Nielsen, 1984; Calder, 1996; Brown and West, 2000) to
describe more realistically how dispersability changes with body mass (D = D0M

δ, where D0

is a coefficient of proportion, representing effects on dispersability other than body mass,
and δ is the power coefficient). Replacing D in equation (5) by the allometric relationship,
we obtain:

dcisland

dM �M = Mmainland

= −
k

A
D0δ(Mmainland)

δ − 1 (6)

Equation (6) also allows us to predict the tendency of an organism to become either giant
or dwarf using the sign of the exponent: δ < 0 results in gigantism, while δ > 0 results in
dwarfism. Given that D = a2/G, the allometric relationship for dispersability can be further
separated into two allometric equations: a = a0M

α and G = G0M
γ. As a result, we can define

the relationship between the different allometric exponents such that: δ = 2α − γ. Therefore,
given equation (6) we can now predict that if α < γ/2 gigantism is expected, while if α > γ/2
dwarfism is expected. The latter condition and the conditions given by equations (5) and (6)
provide equivalent forms of the same prediction regarding gigantism and dwarfism.

Considering the selection pressure operating towards reducing dispersability as given in
equation (4) and the separation of dispersability (D) into effects of body mass (represented
by M δ) and effects other than that of body mass (represented by D0), we can rewrite
equation (4) as two equations:

∂cisland

∂M �M = Mmainland

= −
k

A
D0δM δ − 1 (7a)

∂Cisland

∂D0
�D0 = D0mainland

= −
k

A
M δ (7b)

Equation (7b) suggests that regardless of the tendency of the organism to have a lower or
larger body mass, organisms on islands will tend towards lower values of D0, which
consequently implies reduced dispersal organs and appendages.

Filin and Ziv118



Similar to the tendency of individuals on the mainland to show an optimal body mass,
individuals of populations occurring on an island should move towards an optimal body
mass, such that population growth rate, with respect to body mass, is maximized. We
approximate c(M) and D(M) as Taylor polynomials of the first significant order (first-order
for D(M) and second-order for c(M)) around M = Mmainland. The difference between island
optimal mass and mainland optimal mass is 

∆M =
k

A
·







dD

dM �M = Mmainland

d2c

dM2 �M = Mmainland







(8)

Equation (8) adds a new prediction regarding body-mass evolution. Not only is the rate
of body-mass evolution expected to be proportional to 1/A (equation 5), but the magnitude
of the change in optimal body mass is proportional to the area of the island (i.e. ∝ 1/A).
Noting that d2c/dM2 is negative because c(M) reaches its maximum at Mmainland, we predict
also here that, as in equation (5), if the derivative of D(M) is positive we get dwarfism
(∆M < 0), whereas if it is negative we get gigantism (∆M > 0).

VALIDATION OF PREDICTIONS

Our new theory of insular evolution provides several important predictions regarding
body-mass change. In particular it suggests that:

1. The direction of the body-mass change (either gigantism or dwarfism) depends on the
sign of the allometric exponent of dispersability (i.e. α > γ/2 results in dwarfism, while
α < γ/2 results in gigantism).

2. The rate of body-mass change (or, evolution) is proportional to 1/A (i.e. organisms on
smaller islands are expected to experience a faster change in body mass than those on
larger islands).

3. The change in optimal body mass, either towards gigantism or dwarfism, is proportional
to 1/A (i.e. organisms are either larger or smaller on smaller islands than on larger
islands).

In the following paragraphs we briefly review several examples from the literature that
support and validate our predictions.

Validation of prediction 1

With respect to our first prediction – directionality of body-mass change – using allometric
relationships (Peters, 1983; Schmidt-Nielsen, 1984; Calder, 1996) we find that generation
time scales with body mass to the power of approximately 1/4 (e.g. reproductive maturity in
mammals scales as M0.29 and age at first breeding in birds scales as M0.23; Calder, 1996, pp.
270–272), hence γ = 0.25. Given our previously developed condition – if α < γ/2 gigantism is
expected, while if α > γ/2 dwarfism is expected – we can predict species to evolve towards
gigantism when α < 0.125 and towards dwarfism when α > 0.125. For mammals, all the
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exponents of natal dispersal distances are significantly larger than 0.125 (Sutherland et al.,
2000), suggesting that mammals should evolve towards dwarfism. Indeed, most mammals
show dwarfism on islands (Case, 1978; Lomolino, 1985; Brown and Lomolino, 1998;
Whittaker, 1998). However, Brown and Zeng (1989) have shown that for 11 species of desert
rodents, dispersal distance decreases with increasing body mass. Therefore, for rodents,
counterintuitively, α < 0 (i.e. α < 0.125), and consequently gigantism is predicted, as is
indeed supported by the many observations of giant insular rodents (Lomolino, 1985; Adler
and Levins, 1994). Median natal dispersal distances of herbivorous and omnivorous birds
scale as M0.18 ± 0.18 (Sutherland et al., 2000); hence, according to our predicted value, 0.125,
both gigantism and dwarfism may evolve in herbivorous and omnivorous birds, as indeed is
observed (McNab, 1994a,b; Feduccia, 1996). Carnivorous birds show a scaling exponent
of 0.62 ± 0.18 (Sutherland et al., 2000); therefore, they are predicted to evolve towards
dwarfism. However, Feduccia (1996) provides several examples of extinct giant owls
and hawks in Cuba, Hispaniola and Puerto Rico, as well as of large barn owls on some
Mediterranean islands during the Pleistocene. Although these observations represent the
few examples that disagree with our prediction, it can be partly attributed to a response of
those species to the larger body mass of their prey (i.e. rodents; Rosenzweig, 1966).

Using the observation that dispersal distance of North American mammals is
proportional to the square root of home range (Bowman et al., 2002), we can use it as a
first approximation for the dispersal–distance relationship, when the latter is not given
explicitly. Note that because the relationship between home range and dispersal distance is
geometric (i.e. a linear measure scales like the root of an area measure), the results for
mammals should be taxon-independent. Based on Calder’s (1996) allometric equation of
lizards’ home range, we obtain α = 0.475, predicting that lizards should evolve towards
dwarfism. Case (1978) lists different groups of lizards with respect to their body mass trends.
Indeed, Teiid, Lacertid and Varanid lizards tend to evolve towards dwarfism (cf. the
Komodo monitor, Varanus komodonesis).

In plants, dispersability of seeds and fruits (the dispersal units) strongly depends on their
mass. Since larger seeds are less likely to be dispersed by winds or animals, we assume α < 0
for plants dispersed by those agents, resulting in gigantism according to our prediction.
Indeed, many insular plants show gigantism of their seeds and fruits, up to grotesque
proportions in some instances (Carlquist, 1974).

Validation of prediction 2

Our second prediction suggests a negative relationship between area and evolution rate.
Unfortunately, the literature has few examples that may help test this prediction. We can,
however, present a couple of them. Pergams and Ashley (2001) show that island rodents
have a significant negative correlation between island size and evolution rates of skeletal
variants, such that the evolutionary rate is inversely proportional to island area. Cody and
Overton (1996) suggest a similar effect for dispersability in populations of weedy plants on
near-shore islands in British Columbia.

Validation of prediction 3

The availability of direct and indirect information on the relationship between the degree of
body-mass change and island area allows us to gain much support for our third prediction,
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which is that the degree of body-mass change is inversely proportional to island area.
Tri-coloured squirrels, fruit bats and rails tend to be, within the range of dwarfism, larger on
larger islands, demonstrating that the shift in body mass is larger as the island area decreases
(Brown and Lomolino, 1998). The flightless Auckland Island’s (606 km2) teal (Anas
aucklandica aucklandica) and the flightless Campbell Island’s (114 km2) teal (A. a. nesiotis)
are 84% and 56%, respectively, of the mass of the brown teal (A. a. chlorotis), which exists
on New Zealand, demonstrating that the smaller the island, the smaller the teals (McNab,
1994a). Similarly, the Hawaiian duck (Anas p. wyvilliana) and the Laysan duck (A. p. laysan-
ensis) have a body mass that is 63% and 49%, respectively, relative to the mass of the
continental mallard (Carlquist, 1965; McNab, 1994a). A similar pattern has been found
among island rails, which also tend to dwarf. McNab (1994a) also found a significant
correlation between the head–body length of flightless rails and island area on a logarithmic
scale. Separating the analysis based on genus – Gallinula and Porphyrio – reveals similar
significant results. The body masses of island populations of the house mouse, Mus
musculus, which follow the general tendency towards gigantism (Foster, 1964) as predicted
for rodents, are significantly larger on Gough Island (65 km2) than on Tristan da Cuncha
Island (111 km2) (Berry, 1964). Insects, including Coleopterans, tend to exhibit both
gigantism and flightlessness on islands (Carlquist, 1974). Individuals of the flightless
carabid, Eurygnathus latreillei, on the large island of Porto Santo are significantly smaller
than those on the smaller Deserta Grande Island, and individuals of Olisthopus maderensis
are much larger on Deserta Grande Island than on the much larger island of Madeira
(Carlquist, 1974). Hence, the mouse, teal and insect examples show that body mass changes
with island area regardless of whether organisms evolve towards gigantism or dwarfism.

Carlquist’s (1974) examples from the genus Fitchia show that, for plants also, the degree
of gigantism is inversely proportional to island area. The seeds of the Tahitian (1041 km2) F.
nutans are smaller than those of F. rapensis from Rapa (171 km2), which are smaller than the
truly gigantic seeds of F. speciosa from Rarotonga (67 km2). Another example is the
Dendroseris species of the Juan Fernandez Islands: the species on Masafuera and
Masatierra (44.64 and 47.11 km2, respectively) have large-sized seeds, but which are much
smaller than the gigantic seeds of D. litoralis on Santa Clara (2.23 km2) (Carlquist, 1974).

Finally, Table 1 summarizes our regression analyses of several data sets of island species.
Our analyses demonstrate a significant decrease in body mass (or its correlates) with a
decrease in island area.

IMPLICATIONS

The examples used in the previous section demonstrate that natural observations match well
with our predictions. We did not intend here to review all the known cases of gigantism and
dwarfism; such reviews have already been published (e.g. Carlquist, 1965, 1974; Lomolino,
1985; Adler and Levins, 1994; Brown and Lomolino, 1998; Whittaker, 1998). Furthermore,
among the many existing studies of gigantism and dwarfism, only a few quantified all the
necessary parameters to allow us to test the specific predictions of our theory; we have used
all those that were available to us. This is not surprising, as previous studies were not
performed to test our particular theory. One aim of this paper, therefore, is to inspire future
work on the specific parameters needed for such tests.

Our theory provides several predictions. We have focused on the three major predictions
that connect body-mass change, island size, dispersability, allometry and evolution rate.

Insular evolution of body-mass change and dispersability 121



Although one would expect all these variables to be hypothetically related in an evolution-
ary context, previous theories have treated some variable interactions separately to explain
specific observations. Our theory provides, for the first time, a framework that allows
evolutionary biologists to consider the relationships between these variables as the interplay
between evolutionary and ecological processes operating on a mainland and an island. If
indeed these variables are connected as suggested by our theory, then additional relations
can be predicted. For example, our equation (3) and the following equations suggest that the
shape of the island may also affect the magnitude and the rate of body-mass change. Other
ecological factors may also affect body-mass evolution if one considers the processes
affecting each of the above variables. As a result, we believe that in addition to providing a
focus on the specific parameters needed to test our predictions, our new theory provides new
lines of investigation as to how insular evolution is affected by various interrelated variables
that separately are known to be significant.
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APPENDIX: DENSITY-DEPENDENT POPULATION-GROWTH FUNCTION

Although our theory is based on Skellam’s (1951) exponential growth equations, we can also show
that when population size and growth are limited (i.e. density-dependent), our predictions of the
exponential growth model still hold. For this, we use a version of Chesson’s lottery model (Chesson
and Warner, 1981), applied for a continuous quantitative trait, body mass. We assume an equilibrium
constant population size, K (carrying capacity). Since birth and death processes still occur at equi-
librium, evolution can take place through changes in gene frequencies (i.e. the differential success of
certain individuals). We denote µ as the relative rate at which individuals die, hence the absolute rate
of death is µK. For small time, dt, the number of dying individuals is µKdt and the contribution of
each individual is cdt. Assuming that c depends on body mass (c = c(M)) and denoting the distribution
of body masses in the population as f(M), the distribution of the number of individuals of each body
mass is: n(M) = Kf(M). The probability-density function, P, of the event that the individual selected to
replace a specific dead individual is of a certain body mass can be written as:

P(M) =
c(M)n(M)dt

∫c(M)n(M)dtdM
=

dt ·c(M)Kf (M)

dt ∫c(M)Kf (M)dM
=

K ·c(M) f (M)

K ∫c(M) f (M)dM
=

c(M)

〈c(M)〉
f (M)

The change in the number of individuals of a certain body mass is:

dn(M) = P(M) ·µKdt − µKdtf(M) = (P(M) − f (M)) ·µKdt

If P < f, the change is negative; if P > f, it is positive. The population dynamics equation becomes:

dn(M)

dt
= (P(M) − f (M)) ·µK

Finally, we can express the change in body-mass frequencies, or the evolutionary dynamics equation,
using the latter equation and the expression for P:

d f (M)

dt
= µf (M) �c(M) − 〈c(M)〉

〈c(M)〉 � = µf (M)�∆c(M)

〈c(M)〉�
Because no specifics regarding c are assumed and the body-mass variable, M, can be replaced by any
other variable, the evolutionary dynamics equation is general. The equilibrium distribution is
f = δ((M − Mopt)) – that is, a homogenous population with a body mass of Mopt, where c(M) reaches
its maximum at M = Mopt. Therefore, like the exponential growth case, on the mainland Mopt =
Mmainland, which satisfies ∂c/∂M = 0. On the island, Mopt maximizes cisland (equation 2). Overall, our
development shows that the same mathematical expressions and predictions developed under the
assumption of an exponential population growth are also valid for the case of limited population size.
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